<|lI!

General Parallel File System

Data Management APl Guide

Version 3 Release 2.1

GA76-0414-02

<|lI!

General Parallel File System

Data Management APl Guide

Version 3 Release 2.1

GA76-0414-02

Note:
%ore using this information and the product it supports, be sure to read the general information under [[Notices” on page]

Third Edition (August 2008)

This edition applies to version 3, release 2, modification 1 of IBM General Parallel File System Multiplatform (product
number 5724-N94), IBM General Parallel File System for POWER™ (product number 5765-G66), and to all
subsequent releases and modifications until otherwise indicated in new editions. Technical changes or additions to
the text and illustrations are indicated by a vertical line (I) to the left of the change.

IBM welcomes your comments. A form for your comments may be provided at the back of this publication, or you
may send your comments to this address:

International Business Machines Corporation

Department 58HA, Mail Station P181

2455 South Road

Poughkeepsie, NY 12601-5400

United States of America

FAX (United States and Canada): 1+845+432-9405
FAX (Other Countries): Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs @us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to
include the following in your comment or note:

 Title and order number of this publication

» Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998, 2008.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures
Tables

About this information .

Who should read this |nf0rmat|on .
Conventions used in this information.
Prerequisite and related information .

ISO 9000 .

Using LookAt to Iook up message explanatlons
How to send your comments

Summary of changes .

Chapter 1. Overview of the Data Management API for GPFS .
GPFS specific DMAPI events Ce e e e
DMAPI functions . .
Mandatory functions |mpIemented in DMAPI for GPFS .
Optional functions implemented in DMAPI for GPFS .
Optional functions that are not implemented in DMAPI for GPFS
GPFS-specific DMAPI functions e e e
DMAPI configuration attributes .
DMAPI restrictions for GPFS.

Chapter 2. Data Management API pr|n0|ples for GPFS .
Sessions e
Events .

Mount and unmount

Tokens and access rights .
Parallelism in Data Management appllcatlons .

Data Management attributes

Support for NFS .

Quota.

Memory mapped f|Ies

Chapter 3. Administering the Data Management API for GPFS
Required files for implementation of Data Management applications .
GPFS configuration options for DMAPI

Enabling DMAPI for a file system

Initializing the Data Management appllcatlon

Chapter 4. Specifications of enhancements in the GPFS implementation of Data Management
API.

Enhancements to data structures

Usage restrictions on DMAPI functions .

Definitions for GPFS specific DMAPI functions.
dm_handle_to_snap L
dm_make_xhandle .

Semantic changes to DMAPI funct|ons

GPFS-specific DMAPI events .

Additional error codes returned by DMAPI functlons

Chapter 5. Failure and recovery of Data Management API for GPFS

© Copyright IBM Corp. 1998, 2008

. Xiii

NO OO hRNDODND = =

.1
.12
. 13
. 13
.14
.14
.14

. 15
. 15
. 16
.17
.17

.19
.19
. 20
.22
.22
. 23
.24
. 26
. 26

. 29

Single-node failure .
Session failure and recovery
Event recovery

Loss of access rights .

DM application failure .

Accessibility features for GPFS
Accessibility features .

Keyboard navigation

IBM and accessibility .

Notices .
Trademarks

Glossary

Index .

iV GPFS: DMAPI Guide

. 29
. 30
. 31
. 31
. 32

. 33
. 33
. 33
. 33

. 35
. 36

. 39

. 43

Figures

1. Flow of a typical synchronous event in multiple node GPFS .

© Copyright IBM Corp. 1998, 2008

.1

Vi GPFS: DMAPI Guide

Tables

1. Typographic conventions .

2. DMAPI configuration attributes .

© Copyright IBM Corp. 1998, 2008

Vii

Viii GPFS: DMAPI Guide

About this information

This information describes the Data Management Application Programming Interface (DMAPI) for General
Parallel File System™ (GPFS™). This implementation is based on The Open Group’s System Management:
Data Storage Management (XDSM) APl Common Applications Environment (CAE) Specification C429, The
Open Group, ISBN 1-85912-190-X specification. The implementation is compliant with the standard. Some
optional features are not implemented.

The XDSM DMAPI model is intended mainly for a single node environment. Some of the key concepts,
such as sessions, event delivery, and recovery, required enhancements for a multiple-node environment
such as GPFS.

This information applies to GPFS version 3.2.1 for AIX® and Linux®.

Note: DMAPI is not supported on Windows®.
To find out which version of GPFS is running on a particular AIX node, enter:

1sTpp -1 gpfs\#

To find out which version of GPFS is running on a particular Linux node, enter:
rpm -ga | grep gpfs

Who should read this information

This information is intended for use by application programmers of GPFS systems. It assumes that you
are, and it is particularly important that you be, familiar with the terminology and concepts in the XDSM
standard as described in the System Management: Data Storage Management (XDSM) APl Common
Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X. It also
assumes that you are experienced with and understand the GPFS program product.

Use this information if you intend to write application programs:
» To monitor events associated with a GPFS file system or with an individual file.
* To manage and maintain GPFS file system data.

Conventions used in this information
describes the typographic conventions used in this information.

Table 1. Typographic conventions

Typographic Usage

convention

Bold Bold words or characters represent system elements that you must use literally, such as
commands, flags, path names, directories, file names, values, and selected menu options.

Bold Underlined Bold Underlined keywords are defaults. These take effect if you fail to specify a different
keyword.

Italic » [talic words or characters represent variable values that you must supply.

» ltalics are also used for publication titles and for general emphasis in text.

© Copyright IBM Corp. 1998, 2008 ix

Table 1. Typographic conventions (continued)

Typographic Usage
convention
Constant width All of the following are displayed in constant width typeface:

» Displayed information

* Message text

* Example text

» Specified text typed by the user

» Field names as displayed on the screen
* Prompts from the system

» References to example text

[] Brackets enclose optional items in format and syntax descriptions.

{} Braces enclose a list from which you must choose an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices. (In other words, it means "or")

<> Angle brackets (less-than and greater-than) enclose the name of a key on the keyboard. For
example, <Enter> refers to the key on your terminal or workstation that is labeled with the
word Enter.

An ellipsis indicates that you can repeat the preceding item one or more times.

<Ctrl-x> The notation <Ctrl-x> indicates a control character sequence. For example, <Ctrl-c> means
that you hold down the control key while pressing <c>.

\ The continuation character is used in programming examples in this information for formatting
purposes.

Prerequisite and related information

For updates to this information, see publib.boulder.ibm.com/infocenter/clresctr/topic/
com.ibm.cluster.gpfs.doc/gpfsbooks.html.

For the latest support information, see the GPFS Frequently Asked Questions at publib.boulder.ibm.com/
infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfag.html.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM® messages you
encounter, as well as for some system abends and codes. You can use LookAt from the following
locations to find IBM message explanations for Clusters software products:

* The Internet. You can access IBM message explanations directly from the LookAt Web site:
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/

* Your wireless handheld device. You can use the LookAt Mobile Edition with a handheld device that has
wireless access and an Internet browser (for example, Internet Explorer for Pocket PCs, Blazer, or
Eudora for Palm OS, or Opera for Linux handheld devices). Link to the LookAt Mobile Edition from the
LookAt Web site.

X GPFS: DMAPI Guide

How to send your comments

Your feedback is important in helping us to produce accurate, high-quality information. If you have any
comments about this information or any other GPFS documentation:

» Send your comments by e-mail to: mhvrcfs @ us.ibm.com.

Include the publication title and order number, and, if applicable, the specific location of the information
you have comments on (for example, a page number or a table number).

» Fill out one of the forms at the back of this information and return it by mail, by fax, or by giving it to an
IBM representative.

To contact the IBM cluster development organization, send your comments by e-mail to:
cluster@us.ibm.com.

About this information Xi

Xii GPFS: DMAPI Guide

Summary of changes

The following sections summarize changes to the GPFS licensed program and the GPFS library for
version 3, release 2, modification 1. Within each information unit in the library, a vertical line to the left of
text and illustrations indicates technical changes or additions made to the previous edition of the book.

Summary of changes
for GPFS Version 3, Release 2, Modification 1
as updated, August 2008

Changes to GPFS and to the GPFS library for version 3, release 2, modification 1 include:
* New information

GPFS for Windows Multiplatform, V3.2.1 supports the Windows Server 2003 R2 operating system
running on 64-bit architectures (AMD x64 / EM64T). GPFS on Windows participates in a new or
existing GPFS V3.2 cluster in conjunction with AIX and Linux (32- or 64-bit) operating systems.

Identity mapping between Windows and UNIX® user accounts is one of the key advancements
delivered in GPFS for Windows Multiplatform. System administrators can explicitly match users and
groups defined on UNIX with those defined on Windows. This allows users to maintain file ownership
and access rights from either platform. System administrators are not required to define an identity
map. GPFS automatically creates a mapping when one is not defined. For more information about
identity mapping, see the General Parallel File System: Concepts, Planning, and Installation Guide
and the General Parallel File System: Advanced Administration Guide.

IBM has enhanced many of the details within GPFS to support the unique semantic requirements
posed by Windows. These include case insensitive names, NTFS-like file attributes, and Windows
file locking. GPFS provides a bridge between a Windows and POSIX view of files, while not
adversely affecting the long-standing capabilities provided on AIX and Linux operating systems.

GPFS for Windows Multiplatform provides the same core services to parallel and serial applications
as are available on AIX and Linux operating systems. GPFS allows parallel applications
simultaneous access to the same files, or different files, from any node that has the GPFS file
system mounted while managing a high level of control over all file system operations. System
administrators and users have a consistent command interface on AlX, Linux, and Windows
operating systems.

The following commands have been updated for Windows:

- mmchfs to add the -t DriveLetter option

- mmcrfs to add the -t DriveLetter option

- mmilsfs to add the -t option to display the Windows drive letter

- mmmount to add the DefaultDriveLetter and Driveletter parameters

- mmumount to add the DefaultDriveLetter and Driveletter parameters

With few exceptions, the commands supported on the Windows operating system are identical to the
commands supported on other GPFS platforms. For a list of unsupported commands, see the
General Parallel File System: Concepts, Planning, and Installation Guide.

GPFS for Windows Multiplatform, V3.2.1 does not support or has restricted support for some
features. For a complete list of these limitations, see the General Parallel File System: Concepts,
Planning, and Installation Guide.

* Changed information:
Minor editorial updates marked by a vertical line to the left of the text.
* Deleted information:
There has been no information deleted from the GPFS library for GPFS V3.2.1.

© Copyright IBM Corp. 1998, 2008 xiii

XiV GPFS: DMAPI Guide

Chapter 1. Overview of the Data Management API for GPFS

The Data Management Application Programming Interface (DMAPI) for General Parallel File System
(GPFS) allows you to monitor events associated with a GPFS file system or with an individual file. You can
also manage and maintain file system data.

Note: The GPFS DMAPI implementation is not supported on Windows. DMAPI-enabled file systems will
not mount on GPFS Windows client node.

The DMAPI component of the GPFS licensed program is available with:
* GPFS 3.2.1 for AIX

+ GPFS 3.2.1 for Linux on eServer™ €325 and xSeries®

* GPFS 3.2.1 for Linux

The GPFS implementation of DMAPI is compliant with the Open Group’s XDSM Standard.

The DMAPI features provided by GPFS include:
+ [‘GPFS specific DMAPI events’|

[‘DMAPI functions” on page 2|

[‘'DMAPI configuration attributes” on page 6|
[‘'DMAPI restrictions for GPFS” on page 7|

GPFS specific DMAPI events

There are three GPFS specific DMAPI events: events implemented in DMAPI for GPFS, optional events
that are not implemented in DMAPI for GPFS, and GPFS specific attribute events that are not part of the
DMAPI standard.

For more information, see:

+ |[Events implemented in DMAPI for GPFS|

+ |[Optional events that are not implemented in DMAPI for GPFS|

+ |GPFS specific attribute events that are not part of the DMAPI standard|

Events implemented in DMAPI for GPFS

These are the events, as defined in the System Management: Data Storage Management (XDSM) API
Common Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X,
implemented in DMAPI for GPFS:
File System Administration Events

* mount

* preunmount

e unmount

* nospace

Namespace Events
* create, postcreate
* remove, postremove
* rename, postrename
+ symlink, postsymlink
* link, postlink

© Copyright IBM Corp. 1998, 2008 1

Data Events
* read
* write
» truncate

Metadata Events
» attribute
* destroy
* close

Pseudo Event
e user event

GPFS guarantees that asynchronous events are delivered, except when the GPFS daemon fails. Events
are enqueued to the session before the corresponding file operation completes. For further information on
failures, see [Chapter 5, “Failure and recovery of Data Management API for GPFS,” on page 29|

Optional events that are not implemented in DMAPI for GPFS

The following optional events, as defined in the System Management: Data Storage Management (XDSM)
API Common Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X,
are not implemented in DMAPI for GPFS:
File System Administration Event

* debut

Metadata Event
e cancel

GPFS specific attribute events that are not part of the DMAPI standard

GPFS generates the following attribute events for DMAPI that are specific to GPFS and not part of the
DMAPI standard:

* Pre-permission change
* Post-permission change

For additional information, refer to ['GPFS-specific DMAPI events” on page 26|

DMAPI functions

All mandatory DMAPI functions and most optional functions that are defined in the System Management:
Data Storage Management (XDSM) APl Common Applications Environment (CAE) Specification C429, The
Open Group, ISBN 1-85912-190-X, are implemented in DMAPI for GPFS.

For C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer to the dmapi.h file
located in the /usr/lpp/mmfs/include directory as part of the GPFS installation.

For changes and restrictions on DMAPI functions as implemented in GPFS, see [‘Usage restrictions on|
[DMAPI functions” on page 20,/ and [‘Semantic changes to DMAPI functions” on page 24 See

Mandatory functions implemented in DMAPI for GPFS

These mandatory functions, as defined in the System Management: Data Storage Management (XDSM)
API Common Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X,
are implemented in DMAPI for GPFS.

2 GPFS: DMAPI Guide

For C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer to the dmapi.h file
located in the /usr/lpp/mmfs/include directory as part of the GPFS installation. However, for a quick
description of the mandatory functions and their applications, refer to the following set of functions:

dm_create_session
Create a new session.

dm_create_userevent
Create a pseudo-event message for a user.

dm_destroy_session
Destroy an existing session.

dm_fd_to_handle
Create a file handle using a file descriptor.

dm_find_eventmsg
Return the message for an event.

dm_get_allocinfo
Get a file’s current allocation information.

dm_get_bulkattr
Get bulk attributes of a file system.

dm_get_config
Get specific data on DMAPI implementation.

dm_get_config_events
List all events supported by the DMAPI implementation.

dm_get_dirattrs
Return a directory’s bulk attributes.

dm_get_eventlist
Return a list of an object’s enabled events.

dm_get_events
Return the next available event messages.

dm_get_fileattr
Get file attributes.

dm_get_mountinfo
Return details from a mount event.

dm_get_region
Get a file’s managed regions.

dm_getall_disp
For a given session, return the disposition of all file system’s events.

dm_getall_sessions
Return all extant sessions.

dm_getall_tokens
Return a session’s outstanding tokens.

dm_handle_cmp
Compare file handles.

dm_handle_free
Free a handle’s storage.

dm_handle_hash
Hash the contents of a handle.

Chapter 1. Overview of the Data Management API for GPFS 3

dm_handle_is_valid
Check a handle’s validity.

dm_handle_to_fshandle
Return the file system handle associated with an object handle.

dm_handle_to_path
Return a path name from a file system handle.

dm_init_attrloc
Initialize a bulk attribute location offset.

dm_init_service
Initialization processing that is implementation-specific.

dm_move_event
Move an event from one session to another.

dm_path_to_fshandle
Create a file system handle using a path name.

dm_path_to_handle
Create a file handle using a path name.

dm_query_right
Determine an object’s access rights.

dm_query_session
Query a session.

dm_read_invis
Read a file without using DMAPI events.

dm_release_right
Release an object’s access rights.

dm_request_right
Request an object’s access rights.

dm_respond_event
Issue a response to an event.

dm_send_msg
Send a message to a session.

dm_set_disp
For a given session, set the disposition of all file system’s events.

dm_set_eventlist
For a given object, set the list of events to be enabled.

dm_set_fileattr
Set a file’s time stamps, ownership and mode.

dm_set_region
Set a file’s managed regions.

dm_write_invis
Write to a file without using DMAPI events.

Optional functions implemented in DMAPI for GPFS

These optional functions, as defined in the System Management: Data Storage Management (XDSM) API
Common Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X, are
implemented in DMAPI for GPFS.

4 GPFS: DMAPI Guide

For C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer to the dmapi.h file
located in the /user/lpp/mmfs/include directory as part of the GPFS installation. However, for a quick
description of the optional functions and their applications, refer to the following set of functions:

dm_downgrade_right
Change an exclusive access right to a shared access right.

dm_get_bulkall
Return a file system’s bulk data management attributes.

dm_get_dmattr
Return a data management attribute.

dm_getall_dmattr
Return all data management attributes of a file.

dm_handle_to_fsid
Get a file system ID using its handle.

dm_handle_to_igen
Get inode generation count using a handle.

dm_handle_to_ino
Get inode from a handle.

dm_make_handle
Create a DMAPI object handle.

dm_make_fshandle
Create a DMAPI file system handle.

dm_punch_hole
Make a hole in a file.

dm_probe_hole
Calculate the rounded result of the area where it is assumed that a hole is to be punched.

dm_remove_dmattr
Delete a data management attribute.

dm_set_dmattr
Define or update a data management attribute.

dm_set_return_on_destroy
Indicate a DM attribute to return with destroy events.

dm_sync_by_handle
Synchronize the in-memory state of a file with the physical medium.

dm_upgrade_right
Change a currently held access right to be exclusive.

Optional functions that are not implemented in DMAPI for GPFS

There are optional functions that are not implemented in DMAPI for GPFS.

The following optional functions, as defined in the System Management: Data Storage Management
(XDSM) APl Common Applications Environment (CAE) Specification C429, The Open Group, ISBN
1-85912-190-X, are not implemented in DMAPI for GPFS:

dm_clear_inherit
Reset the inherit-on-create status of an attribute.

dm_create_by_handle
Define a file system object using a DM handle.

Chapter 1. Overview of the Data Management API for GPFS 5

dm_getall_inherit
Return a file system’s inheritable attributes.

dm_mkdir_by_handle
Define a directory object using a handle.

dm_obj_ref hold
Put a hold on a file system object.

dm_obj_ref_query
Determine if there is a hold on a file system object.

dm_obj_ref_rele
Release the hold on a file system object.

dm_pending
Notify FS of slow DM application processing.

dm_set_inherit
Indicate that an attribute is inheritable.

dm_symlink_by_handle
Define a symbolic link using a DM handle.

GPFS-specific DMAPI functions
There are GPFS-specific DMAPI functions that are not part of the DMAPI open standard.

The GPFS-specific functions are:

dm_handle_to_snap
Get a snapshot id using a handle.

dm_make_xhandle
Create a DMAPI snapshot handle.

For additional information, refer to [‘Definitions for GPFS specific DMAPI functions” on page 22|

DMAPI configuration attributes

The System Management: Data Storage Management (XDSM) APl Common Applications Environment
(CAE) Specification C429, The Open Group, ISBN 1-85912-190-X defines a set of configuration attributes
to be exported by each DMAPI implementation. These attributes specify which optional features are
supported and give bounds on various resources.

The Data Management (DM) application can query the attribute values using the function dm_get_config.
It can also query which events are supported, using the function dm_get_config_events.

The functions dm_get_config and dm_get_config_events receive a file handle from input arguments
hanp and hlen. In GPFES, both functions ignore the handle, as the configuration is not dependent on the
specific file or file system. This enables the DM application to query the configuration during initialization,
when file handles may not yet be available.

Note: To guarantee that the most current values are being used, the DM application should always query
the configuration at runtime by using dm_get_config.

6 GPFS: DMAPI Guide

shows the attribute values that are used in GPFS:

Table 2. DMAPI configuration attributes

Name Value
DM_CONFIG_BULKALL 1
DM_CONFIG_CREATE_BY_HANDLE 0
DM_CONFIG_DTIME_OVERLOAD 1
DM_CONFIG_LEGACY 1
DM_CONFIG_LOCK_UPGRADE 1
DM_CONFIG_MAX_ATTR_ON_DESTROY 1022
DM_CONFIG_MAX_ATTRIBUTE_SIZE 1022
DM_CONFIG_MAX_HANDLE_SIZE 32
DM_CONFIG_MAX_MANAGED_REGIONS 32
DM_CONFIG_MAX_MESSAGE_DATA 4096
DM_CONFIG_OBJ_REF 0
DM_CONFIG_PENDING 0
DM_CONFIG_PERS_ATTRIBUTES 1
DM_CONFIG_PERS_EVENTS 1
DM_CONFIG_PERS_INHERIT_ATTRIBS 0
DM_CONFIG_PERS_MANAGED_REGIONS 1
DM_CONFIG_PUNCH_HOLE 1
DM_CONFIG_TOTAL_ATTRIBUTE_SPACE 7168
DM_CONFIG_WILL_RETRY 0

Attribute value DM_CONFIG_TOTAL_ATTRIBUTE_SPACE is per file. The entire space is available for
opaque attributes. Non-opaque attributes (event list and managed regions) use separate space.

DMAPI restrictions for GPFS

All DMAPI APIs must be called from nodes that are in the cluster where the file system is created. DMAPI

APIls may not be invoked from a remote cluster.

In addition to the DMAPI API restriction listed above, GPFS places the following restrictions on the use of
file system snapshots when you have DMAPI enabled:

* Snapshots cannot coexist with file systems using GPFS 3.1 or earlier.

* GPFS 3.2 and later permits snapshots with DMAPI-enabled file systems. However, GPFS places the
following restrictions on DMAPI access to the snapshot files:

— The DM server may read files in a snapshot using dm_read_invis.

— The DM server is not allowed to modify or delete the file using dm_write_invis or dm_punch_hole.
— The DM server is not allowed to establish a managed region on the file.

— Snapshot creation or deletion does not generate DMAPI name space events.

— Snapshots of a file are not managed regardless of the state of the original file and they do not inherit

the DMAPI attributes of the original file.

Chapter 1. Overview of the Data Management API for GPFS 7

8 GPFS: DMAPI Guide

Chapter 2. Data Management API principles for GPFS

The XDSM standard is intended mainly for a single-node environment. Some of the key concepts in the
standard such as sessions, event delivery, mount and unmount, and failure and recovery, are not well
defined for a multiple node environment such as GPFS.

For a list of restrictions and coexistence considerations, see [‘Usage restrictions on DMAPI functions” on|

All DMAPI APIs must be called from nodes that are in the cluster where the file system is created.

Enhancements in the DMAPI model used in GPFS include these areas:

* [‘Sessions”
“Events”

[‘Mount and unmount” on page 11|

+ [‘Tokens and access rights” on page 12|

[‘Parallelism in Data Management applications” on page 13|
[‘Data Management attributes” on page 13|

[‘Support for NFS” on page 14|

+ [‘Quota” on page 14|

+ [‘Memory mapped files” on page 14

Sessions

In GPFS, a session is associated with a specific node, the node on which the session was created. This is
called the session node.

Events are generated at any node where the file system is mounted. The node on which a given event is
generated is called the source node of that event. The event is delivered to a session queue on the
session node.

There are restrictions as to which DMAPI functions can and cannot be called from a node other than the
session node. In general, functions that change the state of a session or event can only be called on the
session node. For example, the maximum number of DMAPI sessions that can be created on a node is
4000. See [‘Usage restrictions on DMAPI functions” on page 20| for details.

Session ids are unique over time within a GPFS cluster. When an existing session is assumed, using
dm_create_session, the new session id returned is the same as the old session id.

A session fails when the GPFS daemon fails on the session node. Unless this is a total failure of GPFS on
all nodes, the session is recoverable. The DM application is expected to assume the old session, possibly
on another node. This will trigger the reconstruction of the session queue. All pending synchronous events
from surviving nodes are resubmitted to the recovered session queue. Such events will have the same
token id as before the failure, except mount events. Asynchronous events, on the other hand, are lost
when the session fails. See [Chapter 5, “Failure and recovery of Data Management AP for GPFS,” on|
[page 29| for information on failure and recovery.

Events

Events arrive on a session queue from any of the nodes in the GPFS cluster.

© Copyright IBM Corp. 1998, 2008 9

The source node of the event is identified by the ev_nodeid field in the header of each event message in
the structure dm_eventmsg. The identification is the GPFS cluster data node number, which is attribute
node_number in the mmsdrfs2 file for a PSSP node or mmsdrfs file for any other type of node.

Data Management events are generated only if the following two conditions are true:
1. The event is enabled.
2. It has a disposition.

A file operation will fail with the EIO error if there is no disposition for an event that is enabled and would
otherwise be generated.

A list of enabled events can be associated individually with a file and globally with an entire file system.
The XDSM standard leaves undefined the situation where the individual and the global event lists are in
conflict. In GPFS, such conflicts are resolved by always using the individual event list, if it exists.

Note: The XDSM standard does not provide the means to remove the individual event list of a file. Thus,
there is no way to enable or disable an event for an entire file system without explicitly changing
each conflicting individual event list.

In GPFS, event lists are persistent.

Event dispositions are specified per file system and are not persistent. They must be set explicitly after the
session is created.

Event generation mechanisms have limited capacity. In case resources are exceeded, new file operations
will wait indefinitely for free resources.

File operations wait indefinitely for a response from synchronous events. The GPFS configuration option,
dmapiEventTimeout, can be used to set a timeout on events that originate from NFS file operations. This
is necessary since NFS have a limited number of server threads that cannot be blocked for long periods of
time. Refer to ['GPFS configuration options for DMAPI” on page 16|and [‘Support for NFS” on page 14

The XDSM standard permits asynchronous events to be discarded at any time. In GPFS, asynchronous
events are guaranteed when the system runs normally, but may be lost during abnormal conditions, such
as failure of GPFS on the session node. Asynchronous events are delivered in a timely manner. That is,
an asynchronous event is enqueued to the session before the corresponding file operation completes.

[Figure 1 on page 11} shows the flow of a typical synchronous event in a multiple node GPFS environment.
The numbered arrows in the figure correspond to the following steps:

1. The user application on the source node performs a file operation on a GPFS file. The file operation
thread generates a synchronous event and blocks, waiting for a response.

2. GPFS on the source node sends the event to GPFS on the session node, according to the disposition
for that event. The event is enqueued to the session queue on the session node.

3. The Data Management application on the session node receives the event (using dm_get_events)
and handles it.

4. The Data Management application on the session node responds to the event (using
dm_respond_event).

5. GPFS on the session node sends the response to GPFS on the source node.

6. GPFS on the source node passes the response to the file operation thread and unblocks it. The file
operation continues.

10 GPFS: DMAPI Guide

Session Source

Node Node Node
DATA MANAGEMENT USER
APPLICATION APPLICATION
4t
2 v s
GPFS 2 GPFS GPFS
5

Figure 1. Flow of a typical synchronous event in multiple node GPFS

Mount and unmount

The XDSM standard implicitly assumes that there is a single mount, pre-unmount and unmount event per
file system. In GPFS, a separate mount event is generated by each mount operation on each node.
Similarly, if the pre-unmount and unmount events are enabled, they are generated by each unmount
operation on each node. Thus, there may be multiple such events for the same file system.

To provide additional information to the DM application, the mode field in the respective event message
structures (me_mode for mount, and ne_mode for pre-unmount and unmount) has a new flag,
DM_LOCAL_MOUNT, which is not defined in the standard. When the flag is set, the mount or unmount
operation is local to the session node. In addition, the new field ev_nodeid in the header of the event
message can be used to identify the source node where the mount or unmount operation was invoked.
The identification is the GPFS cluster data node number, which is attribute node_number in the
mmsdrfs2 file for a PSSP node or mmsdrfs file for any other type of node.

The mount event is sent to multiple sessions that have a disposition for it. If there is no disposition for the
mount event, the mount operation fails with an EIO error.

There is no practical way to designate the /ast unmount, since there is no serialization of all mount and
unmount operations of each file system. Receiving an unmount event with the value 0 in the ne_retcode
field is no indication that there will be no further events from the file system.

An unmount initiated internally by the GPFS daemon, due to file system forced unmount or daemon
shutdown, will not generate any events. Consequently, there need not be a match between the number of
mount events and the number of pre-unmount or unmount events for a given file system.

The GPFS configuration option dmapiMountTimeout enables blocking the mount operation for a limited
time until some session has set the mount disposition. This helps synchronizing between GPFS and the
DM application during initialization. See ['GPFS configuration options for DMAPI” on page 16|and
[‘Initializing the Data Management application” on page 17|

Mount events are enqueued on the session queue ahead of any other events. This gives mount events a
higher priority that improves the response time for mount events when the queue is very busy.

If the DM_UNMOUNT_FORCE flag is set in the pre-unmount event message, the response of the DM
application to the pre-unmount event is ignored, and the forced unmount proceeds in any case. If the
DM_LOCAL_MOUNT flag is also set, the forced unmount will result in loss of all access rights of the given
file system that are associated with any local session.

Chapter 2. Data Management AP principles for GPFS 11

If the unmount is not forced (the DM_UNMOUNT_FORCE flag is not set), and the DM_LOCAL_MOUNT
flag is set, the DM application is expected to release all access rights on files of the given file system,
associated with any local session. If any access rights remain held after the DM_RESP_CONTINUE
response is given, the unmount will fail with EBUSY. This is since access rights render the file system
busy, similar to other locks on files.

The function dm_get_mountinfo can be called from any node, even if the file system is not mounted on
that node. The dm_mount_event structure returned by the dm_get_mountinfo function provides the
following enhanced information. The me_mode field contains two new flags, DM_LOCAL_MOUNT and
DM_REMOTE_MOUNT. At least one of the two flags is always set. When both flags are set
simultaneously, it is an indication that the file system is mounted on the local node, as well as one or more
other (remote) nodes. When only DM_LOCAL_MOUNT is set, it is an indication that the file system is
mounted on the local node but not on any other node. When only DM_REMOTE_MOUNT is set, it is an
indication that the file system is mounted on some remote node, but not on the local node.

In the latter case (only DM_REMOTE_MOUNT is set), the fields me_roothandle and me_handle2 (the
mount point handle) in the dm_mount_event structure are set to DM_INVALID_HANDLE. Also in this
case, the me_name1 field (the mount point path) is taken from the stanza in the file /etc/filesystems on
one of the remote nodes (with the use of GPFS cluster data, the stanzas on all nodes are identical).

The enhanced information provided by the dm_get_mountinfo function can be useful during the
processing of mount and pre-unmount events. For example, before responding to a mount event from a
remote (non-session) node, dm_get_mountinfo could be invoked to find out whether the file system is
already mounted locally at the session node, and if not, initiate a local mount. On receiving a pre-unmount
event from the local session node, it is possible to find out whether the file system is still mounted
elsewhere, and if so, fail the local unmount or delay the response until after all remote nodes have
unmounted the file system.

Note: The DM_REMOTE_MOUNT flag is redundant in the dm_mount_event structure obtained from the
mount event (as opposed to the dm_get_mountinfo function).

Tokens and access rights

A DMAPI token is an identifier of an outstanding event (a synchronous event that the DM application has
received and is currently handling). The token is unique over time in the cluster. The token becomes
invalid when the event receives a response.

The main purpose of tokens is to convey access rights in DMAPI functions. Access rights are associated
with a specific event token. A function requiring access rights to some file may present an event token that
has the proper access rights.

DMAPI functions can also be invoked using DM_NO_TOKEN, in which case sufficient access protection is
provided for the duration of the operation. This is semantically equivalent to holding an access right, but no
access right on the file is actually acquired.

In GPFS, when an event is received, it's token has no associated access rights.

DM access rights are implemented in GPFS using an internal lock on the file. Access rights can be
acquired, changed, queried, and released only at the session node. This is an implementation restriction,
caused by the GPFS locking mechanisms.

In GPFS, it is not possible to set an access right on an entire file system, from the file system handle.
Thus, DMAPI function calls that reference a file system, using a file system handle, are not allowed to
present a token and must specify DM_NO_TOKEN. For the same reason, functions that acquire or change
access rights are not allowed to present a file system handle.

12 GPFS: DMAPI Guide

Holding access rights renders the corresponding file system busy at the session node, preventing normal
(non-forced) unmount. This behavior is similar to that of other locks on files. When receiving a
pre-unmount event, the DM application is expected to release all access rights before responding.
Otherwise, the unmount operation will fail, with an EBUSY error.

All access rights associated with an event token are released when the response is given. There is no
transfer of access rights from DMAPI to the file operation thread. The file operation will acquire any
necessary locks after receiving the response of the event.

Parallelism in Data Management applications

Given the multiple node environment of GPFS, it is desirable to exploit parallelism in the Data
Management application as well.

This can be accomplished in several ways:

» On a given session node, multiple DM application threads can access the same file in parallel, using the
same session. There is no limit on the number of threads that can invoke DMAPI functions
simultaneously on each node.

» Multiple sessions, each with event dispositions for a different file system, can be created on separate
nodes. Thus, files in different file systems can be accessed independently and simultaneously, from
different session nodes.

» Dispositions for events of the same file system can be partitioned among multiple sessions, each on a
different node. This distributes the management of one file system among several session nodes.

» Although GPFS routes all events to a single session node, data movement may occur on multiple
nodes. The function calls dm_read_invis, dm_write_invis, dm_probe_hole, and dm_punch_hole are
honored from a root process on another node, provided it presents a session ID for an established
session on the session node.

A DM application may create a worker process, which exists on any node within the GPFS cluster. This
worker process can move data to or from GPFS using the dm_read_invis and dm_write_invis
functions. The worker processes must adhere to these guidelines:

1. They must run as root.
2. They must present a valid session ID, which was obtained on the session node.

3. All writes to the same file which are done in parallel must be done in multiples of the file system
block size, to allow correct management of disk blocks on the writes.

4. No DMAPI calls other than dm_read_invis, dm_write_invis, dm_probe_hole, and
dm_punch_hole may be issued on nodes other than the session node. This means that any rights
required on a file must be obtained within the session on the session node, prior to the data
movement.

5. There is no persistent state on the nodes hosting the worker process. It is the responsibility of the
DM application to recover any failure which results from the failure of GPFS or the data movement
process.

Data Management attributes

Data Management attributes can be associated with any individual file. There are opaque and non-opaque
attributes.

An opaque attribute has a unique name, and a byte string value which is not interpreted by the DMAPI
implementation. Non-opaque attributes, such as managed regions and event lists, are used internally by
the DMAPI implementation.

DM attributes are persistent. They are kept in a hidden file in the file system.

Chapter 2. Data Management API principles for GPFS 13

GPFS provides two quick access single-bit opaque DM attributes for each file, stored directly in the inode.
These attributes are accessible through regular DMAPI functions, by specifying the reserved attribute
names _GPFSQA1 and _GPFSQA2 (where _GPF is a reserved prefix). The attribute data must be a
single byte with contents 0 or 1.

Support for NFS

A DM application could be slow in handling events. NFS servers have a limited number of threads which
must not all be blocked simultaneously for extended periods of time. GPFS provides a mechanism to
guarantee progress of NFS file operations that generate data events without blocking the server threads
indefinitely.

The mechanism uses a timeout on synchronous events. Initially the NFS server thread is blocked on the
event. When the timeout expires, the thread unblocks and the file operation fails with an ENOTREADY
error code. The event itself continues to exist and will eventually be handled. When a response for the
event arrives at the source node it is saved. NFS is expected to periodically retry the operation. The retry
will either find the response which has arrived between retries, or cause the operation to fail again with
ENOTREADY. After repeated retries, the operation is eventually expected to succeed.

The interval is configurable using the GPFS configuration option dmapiEventTimeout. See [‘'GPFS
[configuration options for DMAPI” on page 16] The default is no timeout.

The timeout mechanism is activated only for data events (read, write, truncate), and only when the file
operation comes from NFS.

Quota

GPFS supports user quota. When dm_punch_hole is invoked, the file owner’s quota is adjusted by the
disk space that is freed. The quota is also adjusted when dm_write_invis is invoked and additional disk
space is consumed.

Since dm_write_invis runs with root credentials, it will never fail due to insufficient quota. However, it is
possible that the quota of the file owner will be exceeded as a result of the invisible write. In that case the
owner will not be able to perform further file operations that consume quota.

Memory mapped files

In GPFS, a read event or a write event will be generated (if enabled) at the time the memory mapping of a
file is established.

No events will be generated during actual mapped access, regardless of the setting of the event list or the
managed regions. Access to the file with regular file operations, while the file is memory mapped, will
generate events, if such events are enabled.

To protect the integrity of memory mapped access, the DM application is not permitted to punch a hole in

a file while the file is memory mapped. If the DM application calls dm_punch_hole while the file is
memory mapped, the error code EBUSY will be returned.

14 GPFS: DMAPI Guide

Chapter 3. Administering the Data Management API for GPFS

To set up the DMAPI for GPFS, install the DMAPI files that are included in the GPFS installation package,
and then choose configuration options for DMAPI with the mmchconfig command. For each file system
that you want DMAPI access, enable DMAPI with the -z flag of the mmerfs or mmchfs command.

All DMAPI APIs must be called from nodes that are in the cluster where the file system is created. DMAPI
APIs may not be invoked from a remote cluster. The GPFS daemon and each DMAPI application must be
synchronized to prevent failures.

Administering the Data Management API for GPFS includes:

+ [‘Required files for implementation of Data Management applications’|
+ ['GPFS configuration options for DMAPI” on page 16|

+ [‘Enabling DMAP!I for a file system” on page 17|

« [YInitializing the Data Management application” on page 17|

Required files for implementation of Data Management applications
The installation image for GPFS contains the required files for implementation of Data Management
applications.

For more information about GPFS installation, see the General Parallel File System: Concepts, Planning,
and Installation Guide.
The required files are:

dmapi.h
The header file that contains the C declarations of the DMAPI functions.

This header file must be included in the source files of the DM application.
The file is installed in directory: /usr/lpp/mmfs/include.

dmapi_types.h
The header file that contains the C declarations of the data types for the DMAPI functions and
event messages.

The header file dmapi.h includes this header file.
The file is installed in directory: /usr/lpp/mmfs/include.

libdmapi.a
The library that contains the DMAPI functions.

The library libdmapi.a consists of a single shared object, which is built with auto-import of the
system calls that are listed in the export file dmapi.exp.

The file is installed in directory: /ust/lpp/mmfs/lib.

dmapi.exp
The export file that contains the DMAPI system call names.

The file dmapi.exp needs to be explicitly used only if the DM application is to be explicitly built
with static binding, using the binder options -bnso -bl:dmapi.exp.

The file is installed in directory: /ust/lpp/mmfs/lib.

dmapicalls
Module loaded during processing of the DMAPI functions.

The module is installed in directory: /ust/Ipp/mmfs/bin

© Copyright IBM Corp. 1998, 2008 15

Note:
* If you are compiling with a non-IBM compiler on AlX nodes, you must compile DMAPI
applications with -D_AIX.
* On Linux nodes running DMAPI, the file libdmapi.so replaces libdmapi.a, dmapi.exp, and
dmapicalls in the list of required files above.

GPFS configuration options for DMAPI

GPFS uses several options for DMAPI that define various timeout intervals. These options can be
changed with the mmchconfig command.

The DMAPI configuration options are:

dmapiEventTimeout
Controls the blocking of file operation threads of NFS, while in the kernel waiting for the handling
of a DMAPI synchronous event. The parameter value is the maximum time, in milliseconds, the
thread will block. When this time expires, the file operation returns ENOTREADY, and the event
continues asynchronously. The NFS server is expected to repeatedly retry the operation, which
eventually will find the response of the original event and continue. This mechanism applies only
to read, write, and truncate events, and only when such events come from NFS server threads.

The timeout value is given in milliseconds. The value 0 indicates immediate timeout (fully
asynchronous event). A value greater than or equal to 86400000 (which is 24 hours) is considered
‘infinity’ (no timeout, fully synchronous event). The default value is 86400000. See also
ffor NFS” on page 14|

| dmapiMountEvent
| Controls the generation of the mount, preunmount, and unmount events. Valid values are:

I all mount, preunmount, and unmount events are generated on each node. This is the
I default behavior.

SessionNode
mount, preunmount, and unmount events are generated on each node and are
delivered to the session node, but the session node will not deliver the event to the
DMAPI application unless the event is originated from the SessionNode itself.

| LocalNode
| mount, preunmount, and unmount events are generated only if the node is a session
| node.

dmapiFileHandleSize
Controls the size of file handles generated by GPFS. For a new cluster, the default DMAPI file
handle size is 32 bytes. For existing clusters, the default DMAPI file handle size is 16 bytes. After
all of the nodes in the cluster are upgraded to at least GPFS 3.2 and you have also run the
mmchconfig release=LATEST command, then you can change the file handle size to 32 bytes by
issuing the command: mmchconfig dmapiFileHandleSize=32.

Note: To change the DMAPI file handle size, GPFS must be stopped on all nodes in the cluster.

dmapiSessionFailureTimeout
Controls the blocking of file operation threads, while in the kernel, waiting for the handling of a
DMAPI synchronous event that is enqueued on a session that has suffered a failure. The
parameter value is the maximum time, in seconds, the thread will wait for the recovery of the failed
session. When this time expires and the session has not yet recovered, the event is aborted and
the file operation fails, returning the EIO error.

The timeout value is given in full seconds. The value 0 indicates immediate timeout (immediate
failure of the file operation). A value greater than or equal to 86400 (which is 24 hours) is

16 GPFS: DMAPI Guide

considered ’infinity’ (no timeout, indefinite blocking until the session recovers). The default value is
0. See also [Chapter 5, “Failure and recovery of Data Management API for GPFS,” on page 29| for
details on session failure and recovery.

dmapiMountTimeout
Controls the blocking of mount operations, waiting for a disposition for the mount event to be set.
This timeout is activated at most once on each node, by the first mount of a file system which has
DMAPI enabled, and only if there has never before been a mount disposition. Any mount operation
on this node that starts while the timeout period is active will wait for the mount disposition. The
parameter value is the maximum time, in seconds, that the mount operation will wait for a
disposition. When this time expires and there still is no disposition for the mount event, the mount
operation fails, returning the EIO error.

The timeout value is given in full seconds. The value 0 indicates immediate timeout (immediate
failure of the mount operation). A value greater than or equal to 86400 (which is 24 hours) is
considered ’infinity’ (no timeout, indefinite blocking until there is a disposition). The default value is
60. See also [‘Mount and unmount” on page 11| and [Initializing the Data Management application.’]

For more information about the mmchonfig command, see the General Parallel File System:
Administration and Programming Reference.

Enabling DMAPI for a file system

DMAPI must be enabled individually for each file system.

DMAPI can be enabled for a file system when the file system is created, using the -z yes option on the
mmcrfs command. The default is -z no. The setting can be changed when the file system is not mounted
anywhere, using the -z yesIno option on the mmchfs command. The setting is persistent.

The current setting can be queried using the -z option on the mmisfs command.

While DMAPI is disabled for a given file system, no events are generated by file operations of that file
system. Any DMAPI function calls referencing that file system fail with an EPERM error.

When mmchfs -z no is used to disable DMAPI, existing event lists, extended attributes, and managed
regions in the given file system remain defined, but will be ignored until DMAPI is re-enabled. The
command mmchfs -z no should be used with caution, since punched holes, if any, are no longer
protected by managed regions.

If the file system was created with a release of GPFS earlier than GPFS 1.3, the file system descriptor
must be upgraded before attempting to enable DMAPI. The upgrade is done using the -V option on the
mmchfs command.

For more information about GPFS commands, see the General Parallel File System: Administration and
Programming Reference.

Initializing the Data Management application

All DMAPI APIs must be called from nodes that are in the cluster where the file system is created. DMAPI
APIs may not be invoked from a remote cluster.

During initialization of GPFS, it is necessary to synchronize the GPFS daemon and the DM application to
prevent mount operations from failing. There are two mechanisms to accomplish this:

1. The shell script gpfsready invoked by the GPFS daemon during initialization.
2. Atimeout interval, allowing mount operations to wait for a disposition to be set for the mount event.

Chapter 3. Administering the Data Management API for GPFS 17

During GPFS initialization, the daemon invokes the shell script gpfsready, located in directory
Ivar/mmfs/etc. This occurs as the file systems are starting to be mounted. The shell script can be
programmed to start or restart the DM application. Upon return from this script, a session should have
been created and a disposition set for the mount event. Otherwise, mount operations may fail due to a
lack of disposition.

In a multinode environment such as GPFS, usually only a small subset of the nodes are session nodes,
having DM applications running locally. On a node that is not a session node, the gpfsready script can be
programmed to synchronize between the local GPFS daemon and a remote DM application. This will
prevent mount from failing on any node.

A sample shell script gpfsready.sample is installed in directory /ust/lpp/mmfs/samples.

If no mount disposition has ever been set in the cluster, the first external mount of a DMAPI-enabled file
system on each node will activate a timeout interval on that node. Any mount operation on that node that
starts during the timeout interval will wait for the mount disposition until the timeout expires. The timeout
interval is configurable, using the GPFS configuration option dmapiMountTimeout (the interval can even
be made infinite). A message is displayed at the beginning of the wait. If there is still no disposition for the
mount event when the timeout expires, the mount operation will fail with an EIO error code. See
[configuration options for DMAPI” on page 16|for more information on dmapiMountTimeout.

18 GPFS: DMAPI Guide

Chapter 4. Specifications of enhancements in the GPFS
implementation of Data Management API

The GPFS implementation of DMAPI provides numerous enhancements in data structures and functions.

These enhancements are provided mainly by the multiple node environment. Some data structures have
additional fields. Many functions have usage restrictions, changes in semantics, and additional error codes.
The enhancements are in these areas:

+ [‘Enhancements to data structures’]

+ [‘Usage restrictions on DMAPI functions” on page 20|

[‘Definitions for GPFS specific DMAPI functions” on page 22|

+ [‘Semantic changes to DMAPI functions” on page 24|
[‘GPFS-specific DMAPI events” on page 26|

[‘Additional error codes returned by DMAPI functions” on page 26|

Enhancements to data structures

This is a description of GPFS enhancements to data structures defined in the XDSM standard.

For complete C declarations of all DMAPI data structures that are used in the GPFS implementation of
DMAPI, refer to the dmapi_types.h file located in the /usr/lpp/mmfs/include directory as part of the
GPFS installation.

+ All file offsets and sizes in DMAPI data structures are 64 bits long.

* Names or path names that are passed in event messages are character strings, terminated by a null
character. The length of the name buffer, as specified in the dm_vardata_t structure, includes the null
character.

* The dm_region_t structure has a new 4-byte field, rg_opaque. The DMAPI implementation does not
interpret rg_opaque. The DM application can use this field to store additional information within the
managed region.

* The dt_change field in the dm_stat structure is not implemented in the inode. The value will change
each time it is returned by the dm_get_fileattr function.

* The dt_dtime field in the dm_stat structure is overloaded on the dt_ctime field.

* The dm_eventmsg structure has a 4 byte field, ev_nodeid that uniquely identifies the node that
generated the event. The id is the GPFS cluster data node number, which is attribute node_number in
the mmsdrfs2 file for a PSSP node or mmsdrfs file for any other type of node.

* The ne_mode field in the dm_namesp_event structure has an additional flag, DM_LOCAL_MOUNT.
For the events preunmount and unmount when this flag is set, the unmount operation is local to the
session node. See ['‘Mount and unmount” on page 11[The me_mode field in the dm_mount_event
structure has two additional flags; DM_LOCAL_MOUNT, and DM_REMOTE_MOUNT. See ['Mount and|
[unmount” on page 11

» There are two ’quick access’ single-bit opaque DM attributes for each file, stored directly in the inode.
See [‘Data Management attributes” on page 13|

* The data type dm_eventset_t is implemented as a bit map, containing one bit for each event that is
defined in DMAPI. The bit is set if, and only if, the event is present.
Variables of type dm_eventset_t should be manipulated only using special macros. The XDSM
standard provides a basic set of such macros. GPFS provides a number of additional macros. The
names of all such macros begin with the prefix DMEV_.

This is the list of additional macros that are provided by the GPFS implementation of DMAPI:

© Copyright IBM Corp. 1998, 2008 19

DMEV_ALL(eset)
Add all events to eset

DMEV_ISZERO(eset)
Check if eset is empty

DMEV_ISALL(eset)
Check if eset contains all events

DMEV_ADD(eset1, eset2)
Add to eset2 all events in eset1

DMEV_REM(eset1, eset2)
Remove from eset2 all events in esetl

DMEV_RES(esetl, eset2)
Restrict eset2 by eset1

DMEV_ISEQ(eset1, eset2)
Check if eset1 and eset2 are equal

DMEV_ISDISJ(eset1, eset2)
Check if eset1 and eset2 are disjoint

DMEV_ISSUB(eset2)
Check if eset1 is a subset of eset2

DMEV_NORM(eset)
Normalize the internal format of eset, clearing all unused bits.
GPFS provides a set of macros for comparison of token ids (value of type dm_token_t).

DM_TOKEN_EQ (x,y)
Check if x and y are the same

DM_TOKEN_NE (x,y)
Check if x and y are different

DM_TOKEN_LT (x,y)
Check if x is less than y

DM_TOKEN_GT (x,y)
Check if x is greater than y

DM_TOKEN_LE (x,y)
Check if x is less than or equal to y

DM_TOKEN_GE (x,y)
Check if x is greater than or equal to y

Usage restrictions on DMAPI functions

There are usage restrictions on DMAPI functions in the GPFS implementation.

For additional information about:

Semantic changes to DMAPI functions in GPFS, see [‘Semantic changes to DMAPI functions” on page]

C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer to the dmapi.h file
located in the /usr/lpp/mmfs/include directory as part of the GPFS installation.

The maximum number of DMAPI sessions that can be created on a node is 4000.

Root credentials are a prerequisite for invoking any DMAPI function, otherwise the function fails with an
EPERM error code.

20 GPFS: DMAPI Guide

DMAPI functions are unable to run if the GPFS kernel extension is not loaded, or if the runtime module
dmapicalls is not installed. An ENOSYS error code is returned in this case.

Invoking a DMAPI function that is not implemented in GPFS results in returning the ENOSYS error
code.

DMAPI functions will fail, with the ENOTREADY error code, if the local GPFS daemon is not running.

DMAPI functions will fail, with the EPERM error code, if DMAPI is disabled for the file system that is
referenced by the file handle argument.

DMAPI functions cannot access GPFS reserved files, such as quota files, inode allocation maps, and so
forth. The EBADF error code is returned in this case.

GPFS does not support access rights on entire file systems (as opposed to individual files). Hence,
DMAPI function calls that reference a file system (with a file system handle) cannot present a token,
and must use DM_NO_TOKEN. Functions affected by this restriction are:

— dm_set_eventlist

— dm_get_eventlist

— dm_set_disp

— dm_get_mountinfo

— dm_set_return_on_destroy

— dm_get_bulkattr

— dm_get_bulkall

If a token is presented, these functions fail with the EINVAL error code.

DMAPI functions that acquire, change, query, or release access rights, must not present a file system
handle. These functions are:

— dm_request_right

— dm_upgrade_right

— dm_downgrade_right

— dm_release_right

— dm_query_right

If a file system handle is presented, these functions fail with the EINVAL error code.

The function dm_request_right, when invoked without wait (the flags argument has a value of 0), will
almost always fail with the EAGAIN error. A GPFS implementation constraint prevents this function from
completing successfully without wait, even if it is known that the requested access right is available. The
DM_RR_WAIT flag must always be used. If the access right is available, there will be no noticeable
delay.

DMAPI function calls that reference a specific token, either as input or as output, can be made only on
the session node. Otherwise, the call fails with the EINVAL error code.

DMAPI function calls that reference an individual file by handle must be made on the session node. The
corresponding file system must be mounted on the session node. The call fails with EINVAL if it is not
on the session node, and with EBADF if the file system is not mounted.

DMAPI function calls that reference a file system by handle (as opposed to an individual file) can be
made on any node, not just the session node. The relevant functions are:

— dm_set_eventlist

— dm_get_eventlist

— dm_set_disp

— dm_get_mountinfo

— dm_set_return_on_destroy
— dm_get_bulkattr

— dm_get_bulkall

Chapter 4. Specifications of enhancements in the GPFS implementation of Data Management API 21

For dm_get_bulkattr and dm_get_bulkall, the system file must be mounted on the node that is making
the call. For the other functions, the file system must be mounted on some node, but not necessarily on
the node that is making the call. As specified previously, all such function calls must use
DM_NO_TOKEN. The function fails with the EBADF error code if the file system is not mounted as
required.

» The function dm_punch_hole will fail with the EBUSY error code if the file to be punched is currently
memory-mapped.

* The function dm_move_event can only be used when the source session and the target session are on
the same node. The function must be called on the session node. Otherwise, the function fails with the
EINVAL error code.

» The function dm_create_session, when providing an existing session id in the argument oldsid, can
only be called on the session node, except after session node failure. Otherwise, the call will return the
EINVAL error code.

* The function dm_destroy_session can only be called on the session node, otherwise the call will fail
with the EINVAL error code.

* The function dm_set_fileattr cannot change the file size. If the dm_at_size bit in the attribute mask is
set, the call fails with the EINVAL error code.

» DMAPI functions that reference an event with a token fail with the ESRCH error code, if the event is not

in an outstanding state. This is related to session recovery. See [Chapter 5, “Failure and recovery of|
[Data Management API for GPFS,” on page 29| for details on session failure and recovery.

Definitions for GPFS specific DMAPI functions

GPFS provides functions that are not part of the DMAPI open standard. GPFS uses these functions to
work with file system snapshots when you have enabled DMAPI.

For specific information about each function, refer to:
+ ['dm_handle_to_snap’|
+ [‘dm_make_xhandle” on page 23|

dm_handle_to_snap

Use the dm_handle_to_snap function to extract a snapshot ID from a handle. dm_handle_to_snap() is a
GPFS specific DMAPI function. It is not part of the open standard.

Synopsis

int dm_handle_to_snap(
void *hanp, /* IN %/
size_t hlen, /% IN =/
dm snap_t *isnapp /* OUT =*/
)s

Parameters

void *hanp (IN)
A pointer to an opaque DM handle previously returned by DMAPI.

size_t hlen (IN)
The length of the handle in bytes.

dm_snap_t *isnapp (OUT)
A pointer to the snapshot ID.

22 GPFS: DMAPI Guide

Return values

Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the following
values:

[EBADF]

The file handle does not refer to an existing or accessible object.
[EFAULT]

The system detected an invalid address in attempting to use an argument.
[EINVAL]

The argument token is not a valid token.
[ENOMEM]

DMAPI could not obtain the required resources to complete the call.
[ENOSYS]

Function is not supported by the DM implementation.
[EPERM]

The caller does not hold the appropriate privilege.

See also

[‘dm_make_xhandle’]

dm_make_xhandle

Use the dm_make_xhandle() function to convert a file system ID, inode number, inode generation count,
and snapshot ID into a handle. dm_make_xhandle() is a GPFS specific DMAPI function. It is not part of
the open standard.

Synopsis

int

dm_make_xhandTe(
dm fsid t *fsidp, [* IN */
dm_ino_t *inop, /% IN */
dm_igen_t *igenp, [* IN */
dm_snap_t *isnapp, [* IN */
void **xhanpp, /* OUT =/
size t *hlenp /* OUT */
)s

Parameters

dm_fsid_t *fsidp (IN)
The file system ID.

dm_ino_t *inop (IN)
The inode number.

dm_snap_t *isnapp (IN)
The snapshot ID.

dm_igen_t *igenp (IN)
The inode generation count.

void **hanpp (OUT)
A DMAPI initialized pointer that identifies a region of memory containing an opaque DM handle.
The caller is responsible for freeing the allocated memory.

size_t *hlenp (OUT)
The length of the handle in bytes.

Chapter 4. Specifications of enhancements in the GPFS implementation of Data Management API 23

Return values

Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the following
values:

[EBADF]

The file handle does not refer to an existing or accessible object.
[EFAULT]

The system detected an invalid address in attempting to use an argument.
[EINVAL]

The argument token is not a valid token.
[ENOMEM]

DMAPI could not obtain the required resources to complete the call.
[ENOSYS]

Function is not supported by the DM implementation.
[EPERM]

The caller does not hold the appropriate privilege.

See also

[‘dm_handle_to_snap” on page 22|

Semantic changes to DMAPI functions

There are semantic changes to DMAPI functions in GPFS. These changes are entailed mostly by the
multiple node environment.

For a list of additional error codes that are used in the GPFS implementation of DMAPI, see [‘Additional]
lerror codes returned by DMAPI functions” on page 26 For C declarations of all DMAPI functions in the
GPFS implementation of DMAPI, refer to the dmapi.h file located in the /usr/lpp/mmfs/include directory
as part of the GPFS installation.

» The following DMAPI functions can be invoked on any node, not just the session node, as long as the
session exists on some node in the GPFS cluster.

— dm_getall_disp
— dm_query_session
— dm_send_msg

* DMAPI functions that reference a file system, as opposed to an individual file, can be made on any
node, not just the session node. Being able to call certain functions on any node has advantages. The
DM application can establish event monitoring when receiving a mount event from any node. Also, a
distributed DM application can change event lists and dispositions of any file system from any node.

— dm_set_eventlist

— dm_get_eventlist

— dm_set_disp

— dm_get_mount_info

— dm_set_return_on_destroy
— dm_get_bulkattr

— dm_get_bulkall

» The following functions, that construct a handle from its components, do not check if the resulting
handle references a valid file. Validity is checked when the handle is presented in function calls that
actually reference the file.

24 GPFS: DMAPI Guide

— dm_make_handle

— dm_make_fshandle

— dm_make_xhandle

The following data movement functions may be invoked on any node within the GPFS cluster, provided
they are run as root and present a session ID for an established session on the session node. For
guidelines on how to perform data movement from multiple nodes, see [‘Parallelism in Data
[Management applications” on page 13
— dm_read_invis

— dm_write_invis

— dm_probe_hole

— dm_punch_hole

The following functions that extract components of the handle, do not check whether the specified
handle references a valid file. Validity is checked when the handle is presented in function calls that
actually reference the file.

— dm_handle_to_fsid

— dm_handle_to_igen

— dm_handle_to_ino

— dm_handle_to_snap

dm_handle_to_fshandle converts a file handle to a file system handle without checking the validity of
either handle.

dm_handle_is_valid does not check if the handle references a valid file. It verifies only that the internal
format of the handle is correct.

dm_init_attrloc ignores all of its arguments, except the output argument /ocp. In the GPFS
implementation of DMAPI, the location pointer is initialized to a constant. Validation of the session,
token, and handle arguments is done by the bulk access functions.

When dm_query_session is called on a node other than the session node, it returns only the first eight
bytes of the session information string.

dm_create_session can be used to move an existing session to another node, if the current session
node has failed. The call must be made on the new session node. See [Chapter 5, “Failure and recovery|
[of Data Management API for GPFS,” on page 29| for details on session node failure and recovery.

Assuming an existing session using dm_create_session does not change the session id. If the
argument sessinfop is NULL, the session information string is not changed.

The argument maxevent in the functions dm_set_disp and dm_set_eventlist is ignored. In GPFS the
set of events is implemented as a bitmap, containing a bit for each possible event.

The value pointed to by the argument nelemp, on return from the functions dm_get_eventlist and
dm_get_config_events, is always DM_EVENT_MAX-1. The argument nelem in these functions is
ignored.

The field dt_nevents in the structure dm_stat_t, returned by the functions dm_get_fileattr and
dm_get_bulkall, always has the value DM_EVENT_MAX-1.

The functions dm_get_config and dm_get_config_events ignore the arguments hanp and hlen. This
is because the configuration is not dependent on the specific file or file system.

The function dm_set_disp, when called with the global handle, ignores any events in the event set
being presented, except the mount event. When dm_set_disp is called with a file system handle, it
ignores the mount event.

The function dm_handle_hash, when called with an individual file handle, returns the inode number of
the file. When dm_handle_hash is called with a file system handle, it returns the value 0.

The function dm_get_mountinfo returns two additional flags in the me_mode field in the
dm_mount_event structure. The flags are DM_MOUNT_LOCAL and DM_MOUNT_REMOTE. See
[‘Mount and unmount” on page 11| for details.

Chapter 4. Specifications of enhancements in the GPFS implementation of Data Management API 25

GPFS-specific DMAPI events

GPFS provides events that are not part of the DMAPI open standard. You can use these GPFS events to
filter out events that are not critical to file management and to prevent system overloads from trivial
information.

The DMAPI standard specifies that the system must generate ATTRIBUTE events each time the "changed
time” (ctime) attribute for a file changes. For systems like GPFS that write files in parallel, this generates
ATTRIBUTE events from every node writing to the file. Consequently, it is easy for ATTRIBUTE events to
overwhelm a data management server. However, the only ctime changes that are critical to GPFS are
changes to either the permissions or ACLs of a file. In most cases, GPFS can ignore other ctime changes.

To distinguish file permission and ACL changes from other ctime updates, the following DMAPI metadata
attribute events allow GPFS to filter ctime updates. Using these events, DM servers are able to track file
permission changes without overwhelming the system with irrelevant ATTRIBUTE events. However, these
events are not part of the CAE Specification C429 open standard and they were implemented specifically
for GPFS 3.2 systems. Systems using GPFS 3.1 (or earlier versions) cannot enable or generate these
events.

Metadata Events

DM_EVENT_PREPERMCHANGE
Pre-permission change event. Event is triggered before file permission change.

DM_EVENT_POSTPERMCHANGE
Post-permission change event. Event is triggered after file permission change.

Note:
1. All nodes on your system must be running GPFS 3.2 or later. Mixed clusters and clusters with
previous versions of GPFS will experience unexpected results if you enable these events.
2. If you only want to track permission and ACL changes, turn off the DM_EVENT_ATTRIBUTE
and turn on both the DM_EVENT_PREPERMCHANGE and DM_EVENT_POSTPERMCHANGE
events.

Additional error codes returned by DMAPI functions

The GPFS implementation of DMAPI uses additional error codes, not specified in the XDSM standard, for
most DMAPI functions.

For C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer to the dmapi.h file
located in the /usr/Ipp/mmfs/include directory as part of the GPFS installation.

For all DMAPI functions, these error codes are used:

ENOSYS
The GPFS kernel extension is not loaded, or the runtime module dmapicalls is not installed.

ENOSYS
An attempt has been made to invoke a DMAPI function that is not implemented in GPFS.

ENOTREADY
The local GPFS daemon is not running or is initializing.

ENOMEM
DMAPI could not acquire the required resources to complete the call. ENOMEM is defined in the
XDSM standard for some DMAPI functions, but not for all.

ESTALE
An error has occurred which does not fit any other error code specified for this function.

26 GPFS: DMAPI Guide

For DMAPI functions that provide a file handle as an input argument, these error codes are used:

EINVAL
The format of the file handle is not valid.

This error is returned without attempting to locate any object that is referenced by the handle. The
EINVAL error code is to be distinguished from the EBADF error code, which, as specified in the
XDSM standard, indicates that the object does not exist or is inaccessible. Thus, GPFS provides a
refinement, distinguishing between format and access errors related to handles.

EPERM
DMAPI is disabled for the file system that is referenced by the file handle.

For DMAPI functions that provide a token as an input argument, these error codes are used:

ESRCH
The event referenced by the token is not in outstanding state.

This is to be distinguished from the EINVAL error code, which is returned when the token itself is
not valid. ESRCH is defined in the XDSM standard for some DMAPI functions, but not for all
relevant functions. In GPFS, the ESRCH error code occurs mostly after recovery from session
failure. See [‘Event recovery” on page 31|for details

For these specific DMAPI functions, the error code listed is used:

Name of function
Error code

dm_downgrade_right() dm_upgrade_right()
EINVAL - The session or token is not valid.

dm_get_region()
EPERM - The caller does not hold the appropriate privilege.

dm_init_service()
EFAULT - The system detected an invalid address in attempting to use an argument.

dm_move_event() dm_respond_event()
EINVAL - The token is not valid.

dm_punch_hole()
EBUSY - The file is currently memory mapped.

dm_probe_hole() dm_punch_hole()
EINVAL - The argument len is too large, and will overflow if cast into offset_t.

EINVAL - The argument off is negative.

dm_write_invis()
EINVAL - The argument flags is not valid.

dm_read_invis() dm_write_invis()
EINVAL - The argument len is too large, and will overflow if placed into the uio_resid field in the
structure uio.

EINVAL - The argument off is negative.

dm_sync_by_handle()
EROFS - The operation is not allowed on a read-only file system.

dm_find_eventmsg() dm_get_bulkall() dm_get_bulkattr() dm_get_dirattrs() dm_get_events()
dm_get_mountinfo() dm_getall_disp() dm_getall_dmattr() dm_handle_to_path()
EINVAL - The argument buflen is too large; it must be smaller than INT_MAX.

Chapter 4. Specifications of enhancements in the GPFS implementation of Data Management API 27

dm_get_alloc_info() dm_getall_sessions() dm_getall_tokens()
EINVAL - The argument nelem is too large; DMAPI cannot acquire sufficient resources.

28 GPFS: DMAPI Guide

Chapter 5. Failure and recovery of Data Management API for
GPFS

Failure and recovery of DMAPI applications in the multiple-node GPFS environment is different than in a
single-node environment, which is assumed in the XDSM standard.

The failure model in XDSM is intended for a single-node system. In this model, there are two types of
failures:

DM application failure
The DM application has failed, but the file system works normally. Recovery entails restarting the
DM application, which then continues handling events. Unless the DM application recovers, events
may remain pending indefinitely.

Total system failure
The file system has failed. All non-persistent DMAPI resources are lost. The DM application itself
may or may not have failed. Sessions are not persistent, so recovery of events is not necessary.
The file system cleans its state when it is restarted. There is no involvement of the DM application
in such cleanup.

The simplistic XDSM failure model is inadequate for GPFS. Being a multiple node environment, GPFS
may fail on one node, but survive on other nodes. This type of failure is called single-node failure (or
partial system failure). GPFS is built to survive and recover from single-node failures, without meaningfully
affecting file access on surviving nodes.

Designers of Data Management applications for GPFS must comply with the enhanced DMAPI failure
model, in order to support recoverability of GPFS. These areas are addressed:

+ [‘Single-node failure”|

+ [‘Session failure and recovery” on page 30|
+ [‘Event recovery” on page 31|

[‘Loss of access rights” on page 31|

[‘DM application failure” on page 32|

Single-node failure

For the GPFS implementation of DMAPI, single-node failure means that DMAPI resources are lost on the
failing node, but not on any other node.

The most common single-node failure is when the local GPFS daemon fails. This renders any GPFS file
system at that node inaccessible. Another possible single-node failure is file system forced unmount. When
just an individual file system is forced unmounted on some node, its resources are lost, but the sessions
on that node, if any, survive.

Single-node failure has a different effect when it occurs on a session node or on a source node:

session node failure
When the GPFS daemon fails, all session queues are lost, as well as all nonpersistent local file
system resources, particularly DM access rights. The DM application may or may not have failed.
The missing resources may in turn cause DMAPI function calls to fail with errors such as
ENOTREADY or ESRCH.

Events generated at other source nodes remain pending despite any failure at the session node.
Moreover, client threads remain blocked on such events.

© Copyright IBM Corp. 1998, 2008 29

source node failure
Events generated by that node are obsolete. If such events have already been enqueued at the
session node, the DM application will process them, even though this may be redundant since no
client is waiting for the response.

According to the XDSM standard, sessions are not persistent. This is inadequate for GPFS. Sessions must
be persistent to the extent of enabling recovery from single-node failures. This is in compliance with a
basic GPFS premise, whereby single-node failures do not affect file access on surviving nodes.
Consequently, after session node failure, the session queue and the events on it must be reconstructed,
possibly on another node.

Session recovery is triggered by the actions of the DM application. The scenario depends on whether or
not the DM application itself has failed.

If the DM application has failed, it must be restarted, possibly on another node, and assume the old
session by id. This will trigger reconstruction of the session queue and the events on it, using backup
information replicated on surviving nodes. The DM application may then continue handling events. The
session id is never changed when a session is assumed.

If the DM application itself survives, it will notice that the session has failed by getting certain error codes
from DMAPI function calls (ENOTREADY, ESRCH). The application could then be moved to another node
and recover the session queue and events on it. Alternatively, the application could wait for the GPFS
daemon to recover. There is also a possibility that the daemon will recover before the DM application even
notices the failure. In these cases, session reconstruction is triggered when the DM application invokes the
first DMAPI function after daemon recovery.

Session failure and recovery

A session fails when the GPFS daemon of the session node fails.

Session failure results in loss of all DM access rights associated with events on the queue, and all the
tokens become invalid. After the session has recovered, any previously outstanding synchronous events
return to the initial (non-outstanding) state, and must be received again.

Session failure may also result in partial loss of the session information string. In such case, GPFS will be
able to restore only the first eight characters of the session string. It is suggested to not have the DM
application be dependent on more than eight characters of the session string.

In extreme situations, failure may also result in loss of event dispositions for some file system. This
happens only if the GPFS daemon fails simultaneously on all nodes where the file system was mounted.
When the file system is remounted, a mount event will be generated, at which point the dispositions could
be reestablished by the DM application.

During session failure, events originating from surviving nodes remain pending, and client threads remain
blocked on such events. It is therefore essential that the DM application assume the old session and
continue processing the pending events. To prevent indefinite blocking of clients, a mechanism has been
implemented whereby pending events will be aborted and corresponding file operations failed with the EIO
error if the failed session is not recovered within a specified time-out interval. The interval is configurable
using the GPFS configuration option dmapiSessionFailureTimeout. See ['GPFS configuration options for|
[DMAPI” on page 16, The default is immediate timeout.

GPFS keeps the state of a failed session for 24 hours, during which the session should be assumed.
When this time has elapsed, and the session has not been assumed, the session is discarded. An attempt
to assume a session after it has been discarded will fail.

30 GPFS: DMAPI Guide

Event recovery

Synchronous events are recoverable after session failure.

The state of synchronous events is maintained both at the source node and at the session node. When
the old session is assumed, pending synchronous events are resubmitted by surviving source nodes.

All the events originating from the session node itself are lost during session failure, including user events
generated by the DM application. All file operations on the session node fail with the ESTALE error code.

When a session fails, all of its tokens become obsolete. After recovery, the dm_getall_tokens function
returns an empty list of tokens, and it is therefore impossible to identify events that were outstanding when
the failure occurred. All recovered events return to the initial non-received state, and must be explicitly
received again. The token id of a recovered event is the same as prior to the failure (except for the mount
event).

If the token of a recovered event is presented in any DMAPI function before the event is explicitly received
again, the call will fail with the ESRCH error code. The ESRCH error indicates that the event exists, but is
not in the outstanding state. This is to be distinguished from the EINVAL error code, which indicates that
the token id itself is not valid (there is no event).

The semantics of the ESRCH error code in GPFS are different from the XDSM standard. This is entailed
by the enhanced failure model. The DM application may not notice that the GPFS daemon has failed and
recovered, and may attempt to use a token it has received prior to the failure. For example, it may try to
respond to the event. The ESRCH error code tells the DM application that it must receive the event again,
before it can continue using the token. Any access rights associated with the token prior to the failure are
lost. See [‘Loss of access rights.’|

When a mount event is resubmitted to a session during session recovery, it will have a different token id
than before the failure. This is an exception to the normal behavior, since all other recovered events have
the same token id as before. The DM application thus cannot distinguish between recovered and new
mount events. This should not be a problem, since the DM application must in any case be able to handle
multiple mount events for the same file system.

Unmount events will not be resubmitted after session recovery. All such events are lost. This should not be
a problem, since the event cannot affect the unmount operation, which has already been completed by the
time the event was generated. In other words, despite being synchronous, semantically the unmount event
resembles an asynchronous post event.

Loss of access rights

When the GPFS daemon fails on the session node, all file systems on the node are forced unmounted. As
a result, all DM access rights associated with any local session are lost.

After daemon recovery, when the old sessions are assumed and the events are resubmitted, there is no
way of identifying events that were already being handled prior to the failure (outstanding events), nor is
there a guarantee that objects have not been accessed or modified after the access rights were lost. The
DM application must be able to recover consistently without depending on persistent access rights. For
example, it could keep its own state of events in progress, or process events idempotently.

Similarly, when a specific file system is forced unmounted at the session node, all DM access rights
associated with the file system are lost, although the events themselves prevail on the session queue.
After the file system is remounted, DMAPI calls using existing tokens may fail due to insufficient access
rights. Also, there is no guarantee that objects have not been accessed or modified after the access rights
were lost.

Chapter 5. Failure and recovery of Data Management API for GPFS 31

DM application failure

If only the DM application fails, the session itself remains active, events remain pending, and client threads
remain blocked waiting for a response. New events will continue to arrive at the session queue.

Note: GPFS is unable to detect that the DM application has failed.

The failed DM application must be recovered on the same node, and continue handling the events. Since
no DMAPI resources are lost in this case, there is little purpose in moving the DM application to another
node. Assuming an existing session on another node is not permitted in GPFS, except after session node
failure.

If the DM application fails simultaneously with the session node, the gpfsready shell script can be used to
restart the DM application on the failed node. See [‘Initializing the Data Management application” on page]
In the case of simultaneous failures, the DM application can also be moved to another node and
assume the failed session there. See [‘Single-node failure” on page 29.

32 GPFS: DMAPI Guide

Accessibility features for GPFS

Accessibility features help users who have a disability, such as restricted mobility or limited vision, to use
information technology products successfully.

Accessibility features

The following list includes the major accessibility features in GPFS:

» Keyboard-only operation

» Interfaces that are commonly used by screen readers

* Keys that are discernible by touch but do not activate just by touching them
* Industry-standard devices for ports and connectors

* The attachment of alternative input and output devices

The IBM Cluster Information Center, and its related publications, are accessibility-enabled. The
accessibility features of the information center are described at http://publib.boulder.ibm.com/infocenter/
clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.addinfo.doc/access.html.

Keyboard navigation

This product uses standard Microsoft® Windows navigation keys.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about the commitment that IBM
has to accessibility:

http://www.ibm.com/able

© Copyright IBM Corp. 1998, 2008 33

34 GPFS: DMAPI Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
IBM’s product, program, or service may be used. Any functionally equivalent product, program, or service
that does not infringe any of IBM’s intellectual property rights may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS 1S”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Intellectual Property Law
Mail Station P300

© Copyright IBM Corp. 1998, 2008 35

2455 South Road,
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment or a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
the application programming interfaces for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. A
current list of IBM trademarks is available on the Web at "Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml

Intel®, Intel Inside® (logos), MMX and Pentium® are trademarks of Intel Corporation in the United States,
other countries, or both.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Red Hat, the Red Hat “Shadow Man” logo, and all Red Hat-based trademarks and logos are trademarks or
registered trademarks of Red Hat, Inc., in the United States and other countries.

36 GPFS: DMAPI Guide

UNIX is a registered trademark of the Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Notices 37

38 GPFS: DMAPI Guide

Glossary

This glossary defines technical terms and
abbreviations used in GPFS documentation. If you
do not find the term you are looking for, refer to
the index of the appropriate book or view the IBM
Glossary of Computing Terms, located on the
Internet at: [http://www-306.ibm.com/software/|
[globalization/terminology/index.jspl

block utilization. The measurement of the percentage
of used subblocks per allocated blocks.

C

cluster. A loosely-coupled collection of independent
systems (nodes) organized into a network for the
purpose of sharing resources and communicating with
each other. See also GPFS cluster.

cluster configuration data. The configuration data
that is stored on the cluster configuration servers.

cluster manager. The node that monitors node status
using disk leases, detects failures, drives recovery, and
selects file system managers. The cluster manager is
the node with the lowest node number among the
quorum nodes that are operating at a particular time.

control data structures. Data structures needed to
manage file data and metadata cached in memory.
Control data structures include hash tables and link
pointers for finding cached data; lock states and tokens
to implement distributed locking; and various flags and
sequence numbers to keep track of updates to the
cached data.

D

Data Management Application Program Interface
(DMAPI). The interface defined by the Open Group’s
XDSM standard as described in the publication |SysteFt|
Management: Data Storage Management (XDSM) AP
Common Application Environment (CAE) Specificatior]
C42g The Open Group ISBN 1-85912-190-X.

deadman switch timer. A kernel timer that works on a
node that has lost its disk lease and has outstanding 1/0O
requests. This timer ensures that the node cannot
complete the outstanding 1/O requests (which would risk
causing file system corruption), by causing a panic in
the kernel.

disk descriptor. A definition of the type of data that
the disk contains and the failure group to which this disk
belongs. See also failure group.

© Copyright IBM Corp. 1998, 2008

disposition. The session to which a data management
event is delivered. An individual disposition is set for
each type of event from each file system.

disk leasing. A method for controlling access to
storage devices from multiple host systems. Any host
that wants to access a storage device configured to use
disk leasing registers for a lease; in the event of a
perceived failure, a host system can deny access,
preventing 1/0 operations with the storage device until
the preempted system has reregistered.

domain. A logical grouping of resources in a network
for the purpose of common management and
administration.

F

failback. Cluster recovery from failover following
repair. See also failover.

failover. (1) The process of transferring all control of
the ESS to a single cluster in the ESS when the other
cluster in the ESS fails. See also cluster. (2) The routing
of all transactions to a second controller when the first
controller fails. See also cluster. (3) The assumption of
file system duties by another node when a node fails.

failure group. A collection of disks that share common
access paths or adapter connection, and could all
become unavailable through a single hardware failure.

fileset. A hierarchical grouping of files managed as a
unit for balancing workload across a cluster.

file-management policy. A set of rules defined in a
policy file that GPFS uses to manage file migration and
file deletion. See also policy.

file-placement policy. A set of rules defined in a
policy file that GPFS uses to manage the initial
placement of a newly created file. See also policy.

file system descriptor. A data structure containing
key information about a file system. This information
includes the disks assigned to the file system (stripe
group), the current state of the file system, and pointers
to key files such as quota files and log files.

file system descriptor quorum. The number of disks
needed in order to write the file system descriptor
correctly.

file system manager. The provider of services for all
the nodes using a single file system. A file system
manager processes changes to the state or description
of the file system, controls the regions of disks that are
allocated to each node, and controls token management
and quota management.

39

http://www.ibm.com/software/globalization/terminology/index.html
http://www.ibm.com/software/globalization/terminology/index.html
http://www.opengroup.org/
http://www.opengroup.org/
http://www.opengroup.org/
http://www.opengroup.org/

fragment. The space allocated for an amount of data
too small to require a full block. A fragment consists of
one or more subblocks.

G

GPFS cluster. A cluster of nodes defined as being
available for use by GPFS file systems.

GPFS portability layer. The interface module that
each installation must build for its specific hardware
platform and Linux distribution.

GPFS recovery log. A file that contains a record of
metadata activity, and exists for each node of a cluster.
In the event of a node failure, the recovery log for the
failed node is replayed, restoring the file system to a
consistent state and allowing other nodes to continue
working.

ill-placed file. A file assigned to one storage pool, but
having some or all of its data in a different storage pool.

ill-replicated file. A file with contents that are not
correctly replicated according to the desired setting for
that file. This situation occurs in the interval between a
change in the file's replication settings or suspending
one of its disks, and the restripe of the file.

indirect block. A block containing pointers to other
blocks.

IBM Virtual Shared Disk. The subsystem that allows
application programs running on different nodes to
access a logical volume as if it were local to each node.
The logical volume is local to only one of the nodes (the
server node).

inode. The internal structure that describes the
individual files in the file system. There is one inode for
each file.

J

journaled file system (JFS). A technology designed
for high-throughput server environments, which are
important for running intranet and other
high-performance e-business file servers.

junction.

A special directory entry that connects a name in a
directory of one fileset to the root directory of another
fileset.

40 GPFS: DMAPI Guide

K

kernel. The part of an operating system that contains
programs for such tasks as input/output, management
and control of hardware, and the scheduling of user
tasks.

L

logical volume. A collection of physical partitions
organized into logical partitions, all contained in a single
volume group. Logical volumes are expandable and can
span several physical volumes in a volume group.

Logical Volume Manager (LVM). A set of system
commands, library routines, and other tools that allow
the user to establish and control logical volume (LVOL)
storage. The LVM maps data between the logical view
of storage space and the physical disk drive module
(DDM).

M

metadata. A data structures that contain access
information about file data. These include: inodes,
indirect blocks, and directories. These data structures
are not accessible to user applications.

metanode. The one node per open file that is
responsible for maintaining file metadata integrity. In
most cases, the node that has had the file open for the
longest period of continuous time is the metanode.

mirroring. The process of writing the same data to
multiple disks at the same time. The mirroring of data
protects it against data loss within the database or
within the recovery log.

multi-tailed. A disk connected to multiple nodes.

N

namespace. Space reserved by a file system to
contain the names of its objects.

Network File System (NFS). A protocol, developed by
Sun Microsystems, Incorporated, that allows any host in
a network to gain access to another host or netgroup
and their file directories.

Network Shared Disk (NSD). A component for
cluster-wide disk naming and access.

NSD volume ID. A unique 16 digit hex number that is
used to identify and access all NSDs.

node. An individual operating-system image within a
cluster. Depending on the way in which the computer
system is partitioned, it may contain one or more nodes.

node descriptor. A definition that indicates how GPFS
uses a node. Possible functions include: manager node,
client node, quorum node, and nonquorum node

node number. A number that is generated and
maintained by GPFS as the cluster is created, and as
nodes are added to or deleted from the cluster.

node quorum. The minimum number of nodes that
must be running in order for the daemon to start.

node quorum with tiebreaker disks. A form of
quorum that allows GPFS to run with as little as one
quorum node available, as long as there is access to a
majority of the quorum disks.

non-quorum node. A node in a cluster that is not
counted for the purposes of quorum determination.

P

policy. A list of file-placement and service-class rules
that define characteristics and placement of files.
Several policies can be defined within the configuration,
but only one policy set is active at one time.

policy rule. A programming statement within a policy
that defines a specific action to be preformed.

pool. A group of resources with similar characteristics
and attributes.

portability. The ability of a programming language to
compile successfully on different operating systems
without requiring changes to the source code.

primary GPFS cluster configuration server. In a
GPFS cluster, the node chosen to maintain the GPFS
cluster configuration data.

private IP address. A IP address used to
communicate on a private network.

public IP address. A IP address used to communicate
on a public network.

Q

quorum node. A node in the cluster that is counted to
determine whether a quorum exists.

quota. The amount of disk space and number of
inodes assigned as upper limits for a specified user,
group of users, or fileset.

quota management. The allocation of disk blocks to
the other nodes writing to the file system, and
comparison of the allocated space to quota limits at
regular intervals.

R

Redundant Array of Independent Disks (RAID). A
collection of two or more disk physical drives that
present to the host an image of one or more logical disk
drives. In the event of a single physical device failure,
the data can be read or regenerated from the other disk
drives in the array due to data redundancy.

recovery. The process of restoring access to file
system data when a failure has occurred. Recovery can
involve reconstructing data or providing alternative
routing through a different server.

replication. The process of maintaining a defined set
of data in more than one location. Replication involves
copying designated changes for one location (a source)
to another (a target), and synchronizing the data in both
locations.

rule. A list of conditions and actions that are triggered
when certain conditions are met. Conditions include
attributes about an object (file name, type or extension,
dates, owner, and groups), the requesting client, and
the container name associated with the object.

S

SAN-attached. Disks that are physically attached to all
nodes in the cluster using Serial Storage Architecture
(SSA) connections or using fibre channel switches

secondary GPFS cluster configuration server. Ina
GPFS cluster, the node chosen to maintain the GPFS
cluster configuration data in the event that the primary
GPFS cluster configuration server fails or becomes
unavailable.

Secure Hash Algorithm digest (SHA digest). A
character string used to identify a GPFS security key.

Serial Storage Architecture (SSA). An American
National Standards Institute (ANSI) standard,
implemented by IBM, for a high-speed serial interface
that provides point-to-point connection for peripherals,
such as storage arrays.

session failure. The loss of all resources of a data
management session due to the failure of the daemon
on the session node.

session node. The node on which a data
management session was created.

Small Computer System Interface (SCSI). An
ANSI-standard electronic interface that allows personal
computers to communicate with peripheral hardware,
such as disk drives, tape drives, CD-ROM drives,
printers, and scanners faster and more flexibly than
previous interfaces.

Glossary 41

snapshot. A copy of changed data in the active files
and directories of a file system with the exception of the
inode number, which is changed to allow application
programs to distinguish between the snapshot and the
active files and directories.

source node. The node on which a data management
event is generated.

SSA. See Serial Storage Architecture.
stand-alone client. The node in a one-node cluster.

storage area network (SAN). A dedicated storage
network tailored to a specific environment, combining
servers, storage products, networking products,
software, and services.

storage pool. A grouping of storage space consisting
of volumes, logical unit numbers (LUNSs), or addresses
that share a common set of administrative
characteristics.

stripe group. The set of disks comprising the storage
assigned to a file system.

striping. A storage process in which information is
split into blocks (a fixed amount of data) and the blocks
are written to (or read from) a series of disks in parallel.

subblock. The smallest unit of data accessible in an
I/O operation, equal to one thirty-second of a data
block.

system storage pool. A storage pool containing file
system control structures, reserved files, directories,
symbolic links, special devices, as well as the metadata
associated with regular files, including indirect blocks
and extended attributes The system storage pool can
also contain user data.

-

token management. A system for controlling file
access in which each application performing a read or
write operation is granted some form of access to a
specific block of file data. Token management provides
data consistency and controls conflicts. Token
management has two components: the token
management server, and the token management
function.

token management function. A component of token
management that requests tokens from the token
management server. The token management function is
located on each cluster node.

token management server. A component of token
management that controls tokens relating to the
operation of the file system. The token management
server is located at the file system manager node.

twin-tailed. A disk connected to two nodes.

42 GPFS: DMAPI Guide

U

user storage pool. A storage pool containing the
blocks of data that make up user files.

\'

virtual file system (VFS). A remote file system that
has been mounted so that it is accessible to the local
user.

virtual shared disk. See IBM Virtual Shared Disk.

virtual node (vnode). The structure that contains
information about a file system object in an virtual file
system (VFS).

Index
A

access rights

locking 12

loss of 31

restrictions 12
accessibility features for the GPFS product 33
application failure 32
argument

buflen 27

flags 27

hanp 25

hlen 25

len 27

nelem 25, 28

nelemp 25

off 27

sessinfop 25
attribute bit

dm_at_size 22
attributes

configuration 6

description 13

extended 13

GPFS specific 19

non-opaque 13

nonopaque 7

opaque 7,13

C

commands
mmchconfig 16
configuration see also cluster 45
configuration option
dmapiEnable 17
dmapiEventTimeout 14
NFS (Network File System) 16
dmapiMountTimeout 11, 17
dmapiSessionFailureTimeout 16, 30
configuration options
DMAPI 16

D

Data Management API
failure 32
restarting 32
data structures
defined 19
specific to GPFS implementation 19
data type
dm_eventset_t 19
definitions
GPFS specific DMAPI functions 22, 23
description
dmapiFileHandleSize 16
dmapiMountEvent 16

© Copyright IBM Corp. 1998, 2008

directory
/user/lpp/mmfs/bin 15
/user/lpp/mmfs/samples 17
Jusr/lpp/mmfs/include 15
/ust/lpp/mmfs/lib 15
/var/mmfs/etc 17
DM application threads 13
DM application, role in session failure 9
DM_EVENT_POSTPERMCHANGE 26
DM_EVENT_PREPERMCHANGE 26
dm_handle_to_snap 6
definitions 22
dm_make_xhandle 6
definitions 23
DM_NO_TOKEN 12
DMAPI
administration 15
applications 15
compiling on AlIX nodes 16
configuration attributes 6
configuration options 16
failure 29
features 1
files on Linux nodes 16
functions 2
initializing 17
overview 1
recovery 29
restrictions 7
DMAPI events
GPFS specific 1
GPFS specific attribute events that are not part of
the DMAPI standard 2
implemented in DMAPI for GPFS 1
optional events not implemented in DMAPI for
GPFS 2
DMAPI events, GPFS specific 26
DMAPI functions, GPFS specific 6
definitions 22
dm_handle_to_snap 22
dm_make_xhandle 23
DMAPI token, description 12
dmapiFileHandleSize
description 16
dmapiMountEvent attribute
description 16

E

enabling DMAPI
migrating a file system 17
mmchfs command 17
mmcrfs command 17
environment
multiple node 9
single-node 9
error code
EAGAIN 21

43

error code (continued)
EBADF 21, 27
EBUSY 11, 14
EINVAL 21, 22, 27, 31
EIO 11,17, 26
ENOMEM 26
ENOSYS 21, 26
ENOTREADY 14, 21, 26, 30
EPERM 20, 21, 26, 27
ESRCH 22, 27, 30, 31

ESTALE 26
error code, definitions 26
event

asynchronous 10
description 10
disposition 10
enabled 10
mount 11
pre-unmount 11
preunmount 19
synchronous 10
unmount 11, 19
events
as defined in XDSM standard 1
asynchronous 2
GPFS specific attribute events that are not part of
the DMAPI standard 2
implemented
data events 2
metadata events 2
namespace events 1
pseudo events 2
implemented in DMAPI for GPFS 1
not implemented
file system administration 2
metadata 2
optional events not implemented in DMAPI for
GPFS 2
source node 29
events, GPFS specific DMAPI events 1, 26
events, metadata
DM_EVENT_POSTPERMCHANGE 26
DM_EVENT_PREPERMCHANGE 26

F

failure
dm application 29
GPFS daemon 2,9
partial system 29
session 9, 10
session node 29
single-node 29
source node 29, 30
total system 29

field
dt_change 19
dt_ctime 19
dt_dtime 19
dt_nevents 25
ev_nodeid 19

44 GPFS: DMAPI Guide

field (continued)
me_handle2 12
me_mode 12, 19, 25
me_namel 12
me_roothandle 12
ne_mode 19
rg_opaque 19
uio_resid 27

file
/etc/filesystems 12
dmapi_types.h 15
dmapi.exp export 15
dmapi.h 15
dmapicalls 15, 21

file handle
error code 27

file system handle 12
usage of 24

file, memory mapped 14

filesets, required 15

flag
DM_LOCAL_MOUNT 11,19
DM_MOUNT_LOCAL 25
DM_MOUNT_REMOTE 25
DM_REMOTE_MOUNT 12, 19
DM_RR_WAIT 21
DM_UNMOUNT_FORCE 11

function
dm_create_session 25
dm_downgrade_right 21, 27
dm_find_eventmsg 27
dm_get_alloc_info 28
dm_get_bulkall 21, 24, 25, 27
dm_get_bulkattr 21, 24, 27
dm_get_config 6
dm_get_config_events 6, 25
dm_get_dirattrs 27
dm_get_eventlist 21, 24, 25
dm_get_events 27
dm_get_fileattr 19, 25
dm_get_mount_info 21
dm_get_mountinfo 12, 19, 21, 24, 25, 27
dm_get_region 27
dm_getall_disp 24, 27
dm_getall_dmattr 27
dm_getall_sessions 28
dm_getall_tokens 28, 31
dm_handle_hash 25
dm_handle_is_valid 25
dm_handle_to_fshandle 25
dm_handle_to_fsid 25
dm_handle_to_igen 25
dm_handle_to_ino 25
dm_handle_to_path 27
dm_handle_to_snap 25
dm_init_attrloc 25
dm_init_service 27
dm_make_fshandle 24
dm_make_handle 24
dm_make_xhandle 24
dm_mount_event 12

function (continued)
dm_move_event 22, 27
dm_probe_hole 25, 27
dm_punch_hole 14, 22, 25, 27
dm_query_right 21
dm_query_session 24, 25
dm_read_invis 25, 27
dm_release_right 21
dm_request_right 21
dm_respond_event 27
dm_send_msg 24
dm_set_disp 21, 24, 25
dm_set_eventlist 21, 24, 25
dm_set_file_attr 22
dm_set_return_on_destroy 21, 24
dm_sync_by_handle 27
dm_upgrade_right 21, 27
dm_write_invis 14, 25, 27

functions
implemented 3, 5
mandatory 3
not implemented 5
optional 5
restrictions 20

functions, GPFS specific DMAPI functions 6
definitions 22
dm_handle_to_snap 22
dm_make_xhandle 23

G

GPFS
enhancements 19
file system 1
implementation 1, 19

GPFS daemon failure 9

GPFS enhancements
implementation of 19

GPFS specific DMAPI events 1, 26

GPFS specific DMAPI functions 6
definitions 22
dm_handle_to_snap 22
dm_make_xhandle 23

installation requirements 15

L

license inquiries 35
LookAt message retrieval tool x

M

macro
DM_TOKEN_EQ (x,y) 20
DM_TOKEN_GE (x,y) 20
DM_TOKEN_GT (xy) 20
DM_TOKEN_LE (x,y) 20

macro (continued)
DM_TOKEN_LT (x,y) 20
DM_TOKEN_NE (x,y) 20
DMEV_ADD(eset1, eset2) 20
DMEV_ALL(eset) 20
DMEV_ISALL(eset) 20
DMEV_ISDISJ(eset1, eset2) 20
DMEV_ISEQ(eset1, eset2) 20
DMEV_ISSUB(eset2) 20
DMEV_ISZERO(eset) 20
DMEV_NORM(eset) 20
DMEV_REM(eset1, eset2) 20
DMEV_RES(esetl, eset2) 20

macros, GPFS 19

macros, XDSM standard 19

message retrieval tool, LookAt x

metadata events
DM_EVENT_POSTPERMCHANGE 26
DM_EVENT_PREPERMCHANGE 26

multi-node environment 29

multi-node system
model for DMAPI 29

multiple sessions 13

N

NFS (Network File System) 14
node id 19
notices 35

P

parallel environment, DM applications 13
patent information 35
performance 10

Q

quota 14

R

recovery
mount event 31
synchronous event 31
unmount event 31
restrictions
functions 20
restripe see rebalance 45
root credentials 20

S

semantic changes
for the GPFS implementation 24

session
failure 10, 25, 30
recovery 30

session node 9, 24, 29
session, assuminga 9, 25

Index

45

sessions
description 9
failure 9
information string, changing 25
maximum per node 9, 20
state of 9
shell script
gpfsready 17
single-node 29
single-node environment 29
snapshots
coexistence 7
source node 9, 29
Stripe Group Manager see File System Manager 45
structure
dm_eventmsg 19
dm_mount_event 12, 19, 25
dm_namesp_event 19
dm_region_t 19
dm_stat 19
dm_stat t 25
dm_vardata_t 19
uio 27

T

token, usage 12
tokens

input arguments 27
trademarks 36

U

usage restrictions 20

X

XDSM standard 6, 9, 29, 30

46 GPFS: DMAPI Guide

Reader’s comments - We’d like to hear from you

General Parallel File System
Data Management APl Guide
Version 3 Release 2.1

Publication No. GA76-0414-02

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM
business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the
personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
» Send your comments to the address on the reverse side of this form.
* Send your comments via e-mail to: mhvrcfs @ us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You

GA76-0414-02

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

GA76-0414-02

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 58HA, Mail Station P181

2455 South Road
Poughkeepsie, NY
12601-5400

Please do not staple

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Program Number: 5724-N94
5765-G66

GA76-0414-02

	Contents
	Figures
	Tables
	About this information
	Who should read this information
	Conventions used in this information
	Prerequisite and related information
	ISO 9000
	Using LookAt to look up message explanations
	How to send your comments

	Summary of changes
	Chapter 1. Overview of the Data Management API for GPFS
	GPFS specific DMAPI events
	DMAPI functions
	Mandatory functions implemented in DMAPI for GPFS
	Optional functions implemented in DMAPI for GPFS
	Optional functions that are not implemented in DMAPI for GPFS
	GPFS-specific DMAPI functions

	DMAPI configuration attributes
	DMAPI restrictions for GPFS

	Chapter 2. Data Management API principles for GPFS
	Sessions
	Events
	Mount and unmount
	Tokens and access rights
	Parallelism in Data Management applications
	Data Management attributes
	Support for NFS
	Quota
	Memory mapped files

	Chapter 3. Administering the Data Management API for GPFS
	Required files for implementation of Data Management applications
	GPFS configuration options for DMAPI
	Enabling DMAPI for a file system
	Initializing the Data Management application

	Chapter 4. Specifications of enhancements in the GPFS implementation of Data Management API
	Enhancements to data structures
	Usage restrictions on DMAPI functions
	Definitions for GPFS specific DMAPI functions
	dm_handle_to_snap
	dm_make_xhandle

	Semantic changes to DMAPI functions
	GPFS-specific DMAPI events
	Additional error codes returned by DMAPI functions

	Chapter 5. Failure and recovery of Data Management API for GPFS
	Single-node failure
	Session failure and recovery
	Event recovery
	Loss of access rights
	DM application failure

	Accessibility features for GPFS
	Accessibility features
	Keyboard navigation
	IBM and accessibility

	Notices
	Trademarks

	Glossary
	Index
	Reader's comments - We'd like to hear from you

