
General Parallel File System

Concepts, Planning, and Installation Guide

Version 3 Release 2.1

GA76-0413-02

���

General Parallel File System

Concepts, Planning, and Installation Guide

Version 3 Release 2.1

GA76-0413-02

���

Note:

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

107.

Third Edition (August 2008)

This edition applies to version 3, release 2, modification 1 of IBM General Parallel File System Multiplatform (product

number 5724-N94), IBM General Parallel File System for POWER (product number 5765-G66), and to all

subsequent releases and modifications until otherwise indicated in new editions. Technical changes or additions to

the text and illustrations are indicated by a vertical line (|) to the left of the change.

IBM welcomes your comments. A form for your comments may be provided at the back of this publication, or you

may address your comments to the following:

 International Business Machines Corporation

 Department 58HA, Mail Station P181

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States and Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this publication

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

|
|
|
|

Contents

Figures . vii

Tables . ix

About this information . xi

Who should read this information . xi

Conventions used in this information . xii

Prerequisite and related information . xii

ISO 9000 . xii

Using LookAt to look up message explanations . xii

How to send your comments . xiii

Summary of changes . xv

Chapter 1. Introducing General Parallel File System 1

The strengths of GPFS . 1

Shared file system access among GPFS clusters . 2

Improved system performance . 2

File consistency . 3

High recoverability and increased data availability . 3

Enhanced system flexibility . 4

Simplified storage management . 4

Simplified administration . 5

The basic GPFS structure . 5

GPFS administration commands . 5

The GPFS kernel extension . 5

The GPFS daemon . 5

The GPFS open source portability layer . 6

GPFS cluster configurations . 7

Interoperable cluster requirements . 10

Chapter 2. Planning for GPFS . 13

Hardware requirements . 13

Software requirements . 13

Recoverability considerations . 14

Node failure . 14

Network Shared Disk server and disk failure . 17

Reduced recovery time using Persistent Reserve . 20

GPFS cluster creation considerations . 20

GPFS node adapter interface names . 21

Nodes in your GPFS cluster . 21

GPFS cluster configuration servers . 22

Remote shell command . 22

Remote file copy command . 23

Cluster name . 23

User ID domain for the cluster . 23

Starting GPFS automatically . 23

Cluster configuration file . 23

Managing distributed tokens . 24

Disk considerations . 24

NSD creation considerations . 25

NSD server considerations . 28

File system descriptor quorum . 29

© Copyright IBM Corp. 1998, 2008 iii

File system creation considerations . 30

Device name of the file system . 32

List of disk descriptors . 32

NFS V4 ’deny-write open lock’ . 33

Disks for your file system . 33

Deciding how the file system is mounted . 33

Block size . 33

atime values . 34

mtime values . 35

Block allocation map . 35

File system authorization . 35

Strict replication . 35

Internal log file . 36

File system recoverability parameters . 36

Number of nodes mounting the file system . 37

Maximum number of files . 37

Windows drive letter . 37

Mountpoint directory . 37

Assign mount command options . 37

Automatic quota activation . 38

Enable DMAPI . 39

A sample file system creation . 39

Chapter 3. Steps to establishing and starting your GPFS cluster 41

Chapter 4. Installing GPFS on Linux nodes . 43

Creating a file to ease the Linux installation process 43

Verifying the level of prerequisite software . 43

Procedure for installing GPFS on Linux nodes . 44

Accepting the electronic license agreement . 44

Creating the GPFS directory . 44

Installing the GPFS man pages . 45

Installing GPFS over a network . 45

Verifying the GPFS installation . 45

Building your GPFS portability layer . 45

Using the automatic configuration tool to build GPFS portability layer 46

Chapter 5. Installing GPFS on AIX nodes . 47

Creating a file to ease the AIX installation process . 47

Verifying the level of prerequisite software . 47

Procedure for installing GPFS on AIX nodes . 48

Accepting the electronic license agreement . 48

Creating the GPFS directory . 48

Creating the GPFS installation table of contents file 48

Installing the GPFS man pages . 48

Installing GPFS over a network . 49

Reconciling existing GPFS files . 49

Verifying the GPFS installation . 49

Chapter 6. Installing GPFS on Windows nodes . 51

GPFS for Windows overview . 51

GPFS limitations on Windows . 52

File name considerations . 53

Case sensitivity . 53

Antivirus software . 53

Differences between GPFS and NTFS . 54

iv GPFS: Concepts, Planning, and Installation Guide

||

||
||
||
||
||
||
||

Access control on GPFS file systems . 54

Installing GPFS prerequisites . 55

Setting up the Windows domain . 55

Creating the GPFS administrative account . 56

Configuring Windows . 56

Installing the Subsystem for UNIX-based Applications 57

Downloading and installing SUA hotfix updates . 57

Installing and configuring OpenSSH . 57

Procedure for installing GPFS on Windows nodes . 58

Chapter 7. Migration, coexistence and compatibility 59

Migrating to GPFS 3.2 from GPFS 3.1 . 59

Migrating to GPFS 3.2 from GPFS 2.3 . 59

Migrating to GPFS 3.2 from GPFS 2.2 or earlier releases of GPFS 60

Completing the migration to a new level of GPFS . 62

Additional considerations when migrating GPFS 2.3 and earlier file systems 63

Reverting to the previous level of GPFS . 64

Reverting to a previous level of GPFS when you have not issued mmchconfig release=LATEST 64

Reverting to a previous level of GPFS when you have issued mmchconfig release=LATEST 64

Coexistence considerations . 65

Compatibility considerations . 65

Considerations for IBM Tivoli Storage Manager for Space Management 65

Applying maintenance to your GPFS system . 66

Chapter 8. Configuring and tuning your system for GPFS 67

General system configuration and tuning considerations 67

Clock synchronization . 67

GPFS administration security . 67

Cache usage . 68

GPFS I/O . 69

Access patterns . 70

Aggregate network interfaces . 70

Swap space . 70

Linux configuration and tuning considerations . 70

updatedb considerations . 71

SUSE LINUX considerations . 71

GPFS helper threads . 71

Communications I/O . 71

Disk I/O . 72

AIX configuration and tuning considerations . 73

Communications I/O . 73

Disk I/O . 73

Switch pool . 74

eServer High Performance Switch . 74

IBM Virtual Shared Disk . 74

GPFS use with Oracle . 75

Chapter 9. Steps to permanently uninstall GPFS . 77

Chapter 10. GPFS architecture . 79

Special management functions . 79

The GPFS cluster manager . 79

The file system manager . 80

The metanode . 81

Use of disk storage and file structure within a GPFS file system 81

Quota files . 83

Contents v

||
||
||
||
||
||
||
||
||

||

GPFS recovery logs . 83

GPFS and memory . 83

Pinned and non-pinned memory . 84

GPFS and network communication . 85

GPFS daemon communication . 85

GPFS administration commands . 86

Application and user interaction with GPFS . 87

Operating system commands . 87

Operating system calls . 88

GPFS command processing . 91

NSD disk discovery . 92

Failure recovery processing . 92

Cluster configuration data files . 93

GPFS backup data . 94

Chapter 11. IBM Virtual Shared Disk considerations 95

Virtual shared disk server considerations . 95

Disk distribution . 96

Disk connectivity . 96

Virtual shared disk creation considerations . 96

Virtual shared disk server and disk failure . 99

Chapter 12. Considerations for GPFS applications 103

Exceptions to Open Group technical standards . 103

Determining if a file system is controlled by GPFS . 103

GPFS exceptions and limitations to NFS V4 ACLs . 104

Accessibility features for GPFS . 105

Accessibility features . 105

Keyboard navigation . 105

IBM and accessibility . 105

Notices . 107

Trademarks . 108

Glossary . 111

Index . 115

vi GPFS: Concepts, Planning, and Installation Guide

Figures

 1. A Linux-only cluster with disks that are SAN-attached to all nodes 7

 2. A Linux-only cluster with an NSD server . 7

 3. An AIX and Linux cluster with an NSD server . 8

 4. An AIX and Linux cluster providing remote access to disks through the High Performance Switch

(HPS) for the AIX nodes and a LAN connection for the Linux nodes 8

 5. An AIX and Linux cluster that provides remote access to disks through multiple NSD servers 9

 6. An AIX cluster with an NSD server . 9

 7. GPFS clusters providing shared file system access 10

 8. GPFS configuration utilizing node quorum . 15

 9. GPFS configuration utilizing node quorum with tiebreaker disks 17

10. RAID/ESS Controller twin-tailed in a SAN configuration 18

11. GPFS configuration specifying multiple NSD servers connected to a common disk controller

utilizing RAID5 with four data disks and one parity disk 18

12. GPFS utilizes failure groups to minimize the probability of a service disruption due to a single

component failure . 19

13. GPFS files have a typical UNIX structure . 82

14. Basic failure groups with servers and disks . 97

15. Failure groups with twin-tailed disks . 98

16. Primary node serving RAID device . 99

17. Backup node serving RAID device . 100

18. RAID/ESS Controller multi-tailed to the primary and secondary virtual shared disk servers 100

19. Concurrent node serving device . 101

© Copyright IBM Corp. 1998, 2008 vii

viii GPFS: Concepts, Planning, and Installation Guide

Tables

1. Typographic conventions . xii

2. GPFS cluster creation options . 20

3. Disk descriptor usage for the GPFS disk commands 28

4. File system creation options . 30

5. Generating short names for Windows . 53

© Copyright IBM Corp. 1998, 2008 ix

||

x GPFS: Concepts, Planning, and Installation Guide

About this information

The General Parallel File System: Concepts, Planning, and Installation Guide describes:

v The IBM® General Parallel File System™ (GPFS™) Multiplatform licensed program, 5724-N94

v The IBM GPFS for POWER™ licensed program, 5765-G66

This information includes information about these topics:

v Introducing GPFS

v Planning concepts for GPFS

v SNMP support

v Installing GPFS

v Migration, coexistence and compatibility

v Applying maintenance

v Configuration and tuning

v Steps to uninstall GPFS

This edition applies to GPFS version 3.2.1 for AIX®, Linux®, and Windows®.

To find out which version of GPFS is running on a particular AIX node, enter:

lslpp -l gpfs*

To find out which version of GPFS is running on a particular Linux node, enter:

rpm -qa | grep gpfs

To find out which version of GPFS is running on a particular Windows node, use the graphical user

interface (GUI) and follow these steps:

1. Click Control Panel–>Add or Remove Programs

2. Click IBM General Parallel File System and choose Click here for support information.

Who should read this information

This information is intended for system administrators, analysts, installers, planners, and programmers of

GPFS clusters.

It assumes that you are very experienced with and fully understand the operating systems on which your

cluster is based.

Use this information if you are:

v Planning for GPFS

v Installing GPFS on a supported cluster configuration, consisting of:

– Linux nodes

– AIX nodes

– Windows nodes

– An interoperable cluster comprised of all operating systems

© Copyright IBM Corp. 1998, 2008 xi

|

|
|

|

|

|

|

Conventions used in this information

Table 1 describes the typographic conventions used in this information.

 Table 1. Typographic conventions

Typographic

convention

Usage

Bold Bold words or characters represent system elements that you must use literally, such as

commands, flags, path names, directories, file names, values, and selected menu options.

Bold Underlined Bold Underlined keywords are defaults. These take effect if you fail to specify a different

keyword.

Italic v Italic words or characters represent variable values that you must supply.

v Italics are also used for publication titles and for general emphasis in text.

Constant width All of the following are displayed in constant width typeface:

v Displayed information

v Message text

v Example text

v Specified text typed by the user

v Field names as displayed on the screen

v Prompts from the system

v References to example text

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices. (In other words, it means ″or″)

<> Angle brackets (less-than and greater-than) enclose the name of a key on the keyboard. For

example, <Enter> refers to the key on your terminal or workstation that is labeled with the

word Enter.

... An ellipsis indicates that you can repeat the preceding item one or more times.

<Ctrl-x> The notation <Ctrl-x> indicates a control character sequence. For example, <Ctrl-c> means

that you hold down the control key while pressing <c>.

\ The continuation character is used in programming examples in this information for formatting

purposes.

Prerequisite and related information

For updates to this information, see publib.boulder.ibm.com/infocenter/clresctr/topic/
com.ibm.cluster.gpfs.doc/gpfsbooks.html.

For the latest support information, see the GPFS Frequently Asked Questions at publib.boulder.ibm.com/
infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM messages you encounter,

as well as for some system abends and codes. You can use LookAt from the following locations to find

IBM message explanations for Clusters software products:

xii GPFS: Concepts, Planning, and Installation Guide

v The Internet. You can access IBM message explanations directly from the LookAt Web site:

http://www.ibm.com/systems/z/os/zos/bkserv/lookat/

v Your wireless handheld device. You can use the LookAt Mobile Edition with a handheld device that has

wireless access and an Internet browser (for example, Internet Explorer for Pocket PCs, Blazer, or

Eudora for Palm OS, or Opera for Linux handheld devices). Link to the LookAt Mobile Edition from the

LookAt Web site.

How to send your comments

Your feedback is important in helping us to produce accurate, high-quality information. If you have any

comments about this information or any other GPFS documentation:

v Send your comments by e-mail to: mhvrcfs@us.ibm.com

Include the publication title and order number, and, if applicable, the specific location of the information

you have comments on (for example, a page number or a table number).

v Fill out one of the forms at the back of this information and return it by mail, by fax, or by giving it to an

IBM representative.

To contact the IBM cluster development organization, send your comments by e-mail to:

cluster@us.ibm.com.

About this information xiii

xiv GPFS: Concepts, Planning, and Installation Guide

Summary of changes

The following sections summarize changes to the GPFS licensed program and the GPFS library for

version 3, release 2, modification 1. Within each information unit in the library, a vertical line to the left of

text and illustrations indicates technical changes or additions made to the previous edition of the book.

Summary of changes

for GPFS Version 3, Release 2, Modification 1

as updated, August 2008

 Changes to GPFS and to the GPFS library for version 3, release 2, modification 1 include:

v New information

– GPFS for Windows Multiplatform, V3.2.1 supports the Windows Server 2003 R2 operating system

running on 64-bit architectures (AMD x64 / EM64T). GPFS on Windows participates in a new or

existing GPFS V3.2 cluster in conjunction with AIX and Linux (32- or 64-bit) operating systems.

– Identity mapping between Windows and UNIX® user accounts is one of the key advancements

delivered in GPFS for Windows Multiplatform. System administrators can explicitly match users and

groups defined on UNIX with those defined on Windows. This allows users to maintain file ownership

and access rights from either platform. System administrators are not required to define an identity

map. GPFS automatically creates a mapping when one is not defined. For more information about

identity mapping, see the General Parallel File System: Concepts, Planning, and Installation Guide

and the General Parallel File System: Advanced Administration Guide.

– IBM has enhanced many of the details within GPFS to support the unique semantic requirements

posed by Windows. These include case insensitive names, NTFS-like file attributes, and Windows

file locking. GPFS provides a bridge between a Windows and POSIX view of files, while not

adversely affecting the long-standing capabilities provided on AIX and Linux operating systems.

– GPFS for Windows Multiplatform provides the same core services to parallel and serial applications

as are available on AIX and Linux operating systems. GPFS allows parallel applications

simultaneous access to the same files, or different files, from any node that has the GPFS file

system mounted while managing a high level of control over all file system operations. System

administrators and users have a consistent command interface on AIX, Linux, and Windows

operating systems.

The following commands have been updated for Windows:

- mmchfs to add the -t DriveLetter option

- mmcrfs to add the -t DriveLetter option

- mmlsfs to add the -t option to display the Windows drive letter

- mmmount to add the DefaultDriveLetter and DriveLetter parameters

- mmumount to add the DefaultDriveLetter and DriveLetter parameters

With few exceptions, the commands supported on the Windows operating system are identical to the

commands supported on other GPFS platforms. For a list of unsupported commands, see the

General Parallel File System: Concepts, Planning, and Installation Guide.

– GPFS for Windows Multiplatform, V3.2.1 does not support or has restricted support for some

features. For a complete list of these limitations, see the General Parallel File System: Concepts,

Planning, and Installation Guide.

v Changed information:

Minor editorial updates marked by a vertical line to the left of the text.

v Deleted information:

There has been no information deleted from the GPFS library for GPFS V3.2.1.

© Copyright IBM Corp. 1998, 2008 xv

xvi GPFS: Concepts, Planning, and Installation Guide

Chapter 1. Introducing General Parallel File System

IBM’s General Parallel File System (GPFS) provides file system services to parallel and serial applications.

GPFS allows parallel applications simultaneous access to the same files, or different files, from any node

which has the GPFS file system mounted while managing a high level of control over all file system

operations.

GPFS is particularly appropriate in an environment where the aggregate peak need for data bandwidth

exceeds the capability of a distributed file system server.

GPFS allows users shared file access within a single GPFS cluster and across multiple GPFS clusters. A

GPFS cluster consists of:

v AIX nodes, Linux nodes, Windows nodes, or a combination thereof (see “GPFS cluster configurations”

on page 7). A node can be:

– An individual operating system image on a single computer within a cluster.

– A system partition that contains an operating system. Some IBM System p5™ and IBM System p™

machines allow multiple system partitions, each of which is considered to be a node within a GPFS

cluster.

v Network shared disks (NSDs) created and maintained by the NSD component of GPFS

– All disks used by GPFS must first be given a globally-accessible NSD name.

– The GPFS NSD component provides a method for cluster-wide disk naming and access.

– On Linux machines running GPFS, you may give an NSD name to:

- Physical disks

- Logical partitions of a disk

- Representations of physical disks (such as LUNs)

– On AIX machines running GPFS, you may give an NSD name to:

- Physical disks

- Virtual shared disks

- Representations of physical disks (such as LUNs)

v A shared network for GPFS communications allowing a single network view of the configuration. A

single network, a LAN or a switch, is used for GPFS communication, including the NSD communication.

The strengths of GPFS

GPFS is a powerful file system that provides global namespace, shared file system access among GPFS

clusters, simultaneous file access from multiple nodes, high recoverability and data availability due to

replication, the ability to make certain changes while a file system is mounted, and simplified

administration that is similar to existing UNIX systems.

For more information, see the following:

v “Shared file system access among GPFS clusters” on page 2

v “Improved system performance” on page 2

v “File consistency” on page 3

v “High recoverability and increased data availability” on page 3

v “Enhanced system flexibility” on page 4

v “Simplified storage management” on page 4

v “Simplified administration” on page 5

© Copyright IBM Corp. 1998, 2008 1

|
|

|

|
|
|

|
|
|
|

Shared file system access among GPFS clusters

GPFS allows users shared access to files in either the cluster where the file system was created or other

GPFS clusters. Each site in the network is managed as a separate cluster, while allowing shared file

system access. When multiple clusters are configured to access the same GPFS file system, Open Secure

Sockets Layer (OpenSSL) is used to authenticate and check authorization for all network connections.

Note: If you use a cipher, the data will be encrypted for transmissions. However, if you set the cipherlist

keyword of the mmauth command to AUTHONLY, only authentication will be used for data

transmissions and data will not be encrypted.

GPFS shared file system access provides for:

v The ability of the cluster granting access to specify multiple security levels, up to one for each

authorized cluster.

v A highly available service as the local cluster may remain active prior to changing security keys.

Periodic changing of keys is necessary for a variety of reasons, including:

– In order to make connection rate performance acceptable in large clusters, the size of the security

keys used for authentication can not be very large. As a result it may be necessary to change

security keys in order to prevent a given key from being compromised while it is still in use.

– As a matter of policy, some institutions may require security keys are changed periodically.

Note: The pair of public and private security keys provided by GPFS are similar to host based

authentication mechanism provided by OpenSSH. Each GPFS cluster has a pair of these keys that

identify the cluster. In addition, each cluster also has an authorized_keys list. Each line in the

authorized_keys list contains the public key of one remote cluster and a list of file systems that

cluster is authorized to mount. For details on shared file system access, see the GPFS: Advanced

Administration Guide.

Improved system performance

Using GPFS to store and retrieve your files can improve system performance by:

v Allowing multiple processes or applications on all nodes in the cluster simultaneous access to the same

file using standard file system calls.

v Increasing aggregate bandwidth of your file system by spreading reads and writes across multiple disks.

v Balancing the load evenly across all disks to maximize their combined throughput. One disk is no more

active than another.

v Supporting very large file and file system sizes.

v Allowing concurrent reads and writes from multiple nodes. This is a key concept in parallel processing.

v Allowing for distributed token (lock) management. Distributing token management reduces system

delays associated with a lockable object waiting to obtaining a token. Refer to “Managing distributed

tokens” on page 24 and “High recoverability and increased data availability” on page 3 for additional

information on token management.

v Allowing for the specification of different networks for GPFS daemon communication and for GPFS

administration command usage within your cluster.

Achieving high throughput to a single, large file requires striping data across multiple disks and multiple

disk controllers. Rather than relying on striping in a separate volume manager layer, GPFS implements

striping in the file system. Managing its own striping affords GPFS the control it needs to achieve fault

tolerance and to balance load across adapters, storage controllers, and disks. Large files in GPFS are

divided into equal sized blocks, and consecutive blocks are placed on different disks in a round-robin

fashion

1

1. Dominique Heger, Gautam Shah: General Parallel File System (GPFS v1.4) for AIX Architecture and Performance, November 2001

2 GPFS: Concepts, Planning, and Installation Guide

To exploit disk parallelism when reading a large file from a single-threaded application, whenever it can

recognize a pattern, GPFS prefetches data into its buffer pool, issuing I/O requests in parallel to as many

disks as necessary to achieve the bandwidth of which the switching fabric is capable. GPFS recognizes

sequential, reverse sequential, and various forms of strided access patterns

1.

GPFS I/O performance may be monitored through the mmpmon command. See the GPFS: Advanced

Administration Guide.

File consistency

GPFS uses a sophisticated token management system to provide data consistency while allowing multiple

independent paths to the same file by the same name from anywhere in the cluster. See Chapter 10,

“GPFS architecture,” on page 79.

High recoverability and increased data availability

GPFS failover support allows you to organize your hardware into failure groups. A failure group is a set of

disks that share a common point of failure that could cause them all to become simultaneously

unavailable. When used in conjunction with the replication feature of GPFS, the creation of multiple failure

groups provides for increased file availability should a group of disks fail. GPFS maintains each instance of

replicated data and metadata on disks in different failure groups. Should a set of disks become

unavailable, GPFS fails over to the replicated copies in another failure group.

During configuration, you assign a replication factor to indicate the total number of copies of data and

metadata you wish to store. Replication allows you to set different levels of protection for each file or one

level for an entire file system. Since replication uses additional disk space and requires extra write time,

you might want to consider replicating only file systems that are frequently read from but seldom written to.

To reduce the overhead involved with the replication of data, you may also choose to replicate only

metadata as a means of providing additional file system protection. For further information on GPFS

replication, see “File system recoverability parameters” on page 36.

GPFS is a logging file system that creates separate logs for each node. These logs record the allocation

and modification of metadata aiding in fast recovery and the restoration of data consistency in the event of

node failure. Even if you do not specify replication when creating a file system, GPFS automatically

replicates recovery logs in separate failure groups, if multiple failure groups have been specified. This

replication feature can be used in conjunction with other GPFS capabilities to maintain one replica in a

geographically separate location which provides some capability for surviving disasters at the other

location. For further information on failure groups, see “NSD creation considerations” on page 25. For

further information on disaster recovery with GPFS see the GPFS: Advanced Administration Guide.

Once your file system is created, it can be configured to mount whenever the GPFS daemon is started.

This feature assures that whenever the system and disks are up, the file system will be available. When

utilizing shared file system access among GPFS clusters, to reduce overall GPFS control traffic you may

indicate to mount the file system when it is first accessed. This is done through either the mmremotefs

command or the mmchfs command using the -A automount option. GPFS mount traffic may be lessened

by using automatic mounts instead of mounting at GPFS startup. Automatic mounts only produce

additional control traffic at the point that the file system is first used by an application or user. Mounting at

GPFS startup on the other hand produces additional control traffic at every GPFS startup. Thus startup of

hundreds of nodes at once may be better served by using automatic mounts. However, when exporting the

file system for Network File System (NFS) mounts, it might be useful to mount the file system when GPFS

is started. For further information on shared file system access and the use of NFS with GPFS, see the

GPFS: Administration and Programming Reference.

Chapter 1. Introducing General Parallel File System 3

Enhanced system flexibility

With GPFS, your system resources are not frozen. You can add or delete disks while the file system is

mounted. When the time is right and system demand is low, you can rebalance the file system across all

currently configured disks. In addition, you can also add or delete nodes without having to stop and restart

the GPFS daemon on all nodes.

Note: In the node quorum with tiebreaker disk configuration, GPFS has a limit of eight quorum nodes. If

you add quorum nodes and exceed that limit, the GPFS daemon must be shutdown. Before you

restart the daemon, you must switch quorum semantics to node quorum. For additional information,

refer to “Quorum” on page 15.

In a SAN configuration where you have also defined NSD servers, if the physical connection to the disk is

broken, GPFS dynamically switches disk access to the servers nodes and continues to provide data

through NSD server nodes. GPFS falls back to local disk access when it has discovered the path has

been repaired.

After GPFS has been configured for your system, depending on your applications, hardware, and

workload, you can re-configure GPFS to increase throughput. You can set up your GPFS environment for

your current applications and users, secure in the knowledge that you can expand in the future without

jeopardizing your data. GPFS capacity can grow as your hardware expands.

Simplified storage management

GPFS provides storage management based on the definition and use of:

v Storage pools

v Policies

v Filesets

Storage pools

A storage pool is a collection of disks or RAIDs with similar properties that are managed together

as a group. Storage pools provide a method to partition storage on the file system. While you plan

how to configure your storage, consider factors such as:

v Improved price-performance by matching the cost of storage to the value of the data.

v Improved performance by:

– Reducing the contention for premium storage

– Reducing the impact of slower devices

v Improved reliability by providing for:

– Replication based on need

– Better failure containment

Policies

Files are assigned to a storage pool based on defined policies. Policies provide for:

v Placing files in a specific storage pool when the files are created

v Migrating files from one storage pool to another

v File deletion based on file characteristics

v Snapshot metadata scans and file list creation

Filesets

Filesets provide a method for partitioning a file system and allow administrative operations at a

finer granularity than the entire file system. For example filesets allow you to:

v Define data block and inode quotas at the fileset level

v Apply policy rules to specific filesets

4 GPFS: Concepts, Planning, and Installation Guide

For further information on storage pools, filesets, and policies see the GPFS: Advanced Administration

Guide.

Simplified administration

GPFS offers many of the standard UNIX file system interfaces allowing most applications to execute

without modification or recompiling. UNIX file system utilities are also supported by GPFS. That is, users

can continue to use the UNIX commands they have always used for ordinary file operations (see

Chapter 12, “Considerations for GPFS applications,” on page 103). The only unique commands are those

for administering the GPFS file system.

GPFS administration commands are similar in name and function to UNIX file system commands, with one

important difference: the GPFS commands operate on multiple nodes. A single GPFS command performs

a file system function across the entire cluster. See the individual commands as documented in the GPFS:

Administration and Programming Reference.

GPFS commands save configuration and file system information in one or more files, collectively known as

GPFS cluster configuration data files. The GPFS administration commands are designed to keep these

files synchronized between each other and with the GPFS system files on each node in the cluster,

thereby providing for accurate configuration data. See “Cluster configuration data files” on page 93.

The basic GPFS structure

GPFS is a clustered file system defined over a number of nodes. On each node in the cluster, GPFS

consists of: administration commands, a kernel extension, a multithreaded daemon, and for Linux nodes,

an open source portability layer.

For more information, see the following topics:

1. “GPFS administration commands”

2. “The GPFS kernel extension”

3. “The GPFS daemon”

4. For nodes in your cluster operating with the Linux operating system, “The GPFS open source

portability layer” on page 6

For a detailed discussion of GPFS, see Chapter 10, “GPFS architecture,” on page 79.

GPFS administration commands

Most GPFS administration tasks can be performed from any node running GPFS. See the individual

commands as documented in the GPFS: Administration and Programming Reference.

The GPFS kernel extension

The GPFS kernel extension provides the interfaces to the operating system vnode and virtual file system

(VFS) layer to register GPFS as a native file system. Structurally, applications make file system calls to the

operating system, which presents them to the GPFS file system kernel extension. In this way, GPFS

appears to applications as just another file system. The GPFS kernel extension will either satisfy these

requests using resources which are already available in the system, or send a message to the GPFS

daemon to complete the request.

The GPFS daemon

The GPFS daemon performs all I/O and buffer management for GPFS. This includes read-ahead for

sequential reads and write-behind for all writes not specified as synchronous. All I/O is protected by GPFS

token management which honors atomicity thereby providing for data consistency of a file system on

multiple nodes.

Chapter 1. Introducing General Parallel File System 5

|
|

The daemon is a multithreaded process with some threads dedicated to specific functions. Dedicated

threads for services requiring priority attention are not used for or blocked by routine work. The daemon

also communicates with instances of the daemon on other nodes to coordinate configuration changes,

recovery and parallel updates of the same data structures. Specific functions that execute on the daemon

include:

1. Allocation of disk space to new files and newly extended files. This is done in coordination with the file

system manager.

2. Management of directories including creation of new directories, insertion and removal of entries into

existing directories, and searching of directories that require I/O.

3. Allocation of appropriate locks to protect the integrity of data and metadata. Locks affecting data that

may be accessed from multiple nodes require interaction with the token management function.

4. Disk I/O is initiated on threads of the daemon.

5. User security and quotas are also managed by the daemon in conjunction with the file system

manager.

The GPFS Network Shared Disk (NSD) component provides a method for cluster-wide disk naming and

high-speed access to data for applications running on nodes that do not have direct access to the disks.

The NSDs in your cluster may be physically attached to all nodes or serve their data through a NSD

server that provides a virtual connection. You are allowed to specify up to eight NSD servers for each

NSD. If one server fails, the next server on the list takes control from the failed node.

For a given disk, each of its NSD servers must have physical access to the same LUN. However, different

servers can serve I/O to different non-intersecting sets of clients. The existing subnet functions in GPFS

determine which NSD server should serve a particular client.

Note: GPFS assumes that nodes within a subnet are connected using high-speed networks. For

additional information on subnet configuration, refer to “Using public and private IP addresses for

GPFS nodes” on page 85.

GPFS determines if a node has physical or virtual connectivity to an underlying NSD through a sequence

of commands invoked from the GPFS daemon. This determination is called disk discovery and occurs at

both initial GPFS startup as well as whenever a file system is mounted.

The default order of access used in disk discovery:

1. Local /dev block device interfaces for virtual shared disk, SAN, SCSI or IDE disks

2. NSD servers

This order can be changed with the useNSDserver mount option.

It is suggested that you always define NSD servers for the disks. In a SAN configuration where NSD

servers have also been defined, if the physical connection is broken, GPFS dynamically switches to the

server nodes and continues to provide data. GPFS falls back to local disk access when it has discovered

the path has been repaired. This is the default behavior, and it can be changed with the useNSDserver file

system mount option.

For further information, see “Disk considerations” on page 24 and “NSD disk discovery” on page 92.

The GPFS open source portability layer

For Linux nodes running GPFS, you must build custom portability modules based on your particular

hardware platform and Linux distribution to enable communication between the Linux kernel and the GPFS

kernel modules. See “Building your GPFS portability layer” on page 45.

6 GPFS: Concepts, Planning, and Installation Guide

GPFS cluster configurations

GPFS can be configured in a variety of ways. This topic includes illustrations of several configurations.

A subset of these configurations includes:

1. Configurations where all disks are SAN-attached to all nodes in the cluster and the nodes in the cluster

are either all Linux (refer to Figure 1) or all AIX. For the latest hardware that GPFS has been tested

with, see the GPFS FAQ at publib.boulder.ibm.com/infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/
gpfs_faqs/gpfsclustersfaq.html.

2. A Linux-only cluster consisting of xSeries®, IBM System p5, IBM System p, or eServer™ processors

with an NSD server attached to the disk (refer to Figure 2). Nodes that are not directly attached to the

disk have remote data access over the local area network (either Ethernet or Myrinet) to the NSD

server. An NSD server with direct Fibre Channel access to the disks can also be defined. Any nodes

directly attached to the disk will not access data through the NSD server. This is the default behavior,

which can be changed with the useNSDserver file system mount option.

3. An AIX and Linux cluster with an NSD server (refer to Figure 3 on page 8). Nodes not directly attached

to the disk have remote access over the local area network to the NSD server.

Figure 1. A Linux-only cluster with disks that are SAN-attached to all nodes

Figure 2. A Linux-only cluster with an NSD server

Chapter 1. Introducing General Parallel File System 7

4. An AIX and Linux cluster with an NSD server (refer to Figure 4). AIX nodes with Recoverable Virtual

Shared Disk (RVSD) and IBM High Performance Switch (HPS) connections to the disk server access

data through that path. Linux nodes or other AIX nodes with no RVSD switch access have remote data

access over the LAN to the NSD server. You can also define additional NSD servers with access to the

disk through RVSD and the switch.

5. An AIX and Linux cluster that provides remote access to disks through multiple NSD servers (refer to

Figure 5 on page 9). In this configuration:

v Internode communication uses the LAN

v All disk access passes through NSD servers

– NSD servers connect the disk to the Linux nodes

– NSD servers use RVSD to connect the disk to the AIX nodes

Figure 3. An AIX and Linux cluster with an NSD server

HPS

GPFS

NSD

Linux

Application

GPFS

NSD server

AIX

Application

GPFS

NSD

AIX

Application

RVSDRVSD

Local Area Network

Figure 4. An AIX and Linux cluster providing remote access to disks through the High Performance Switch (HPS) for

the AIX nodes and a LAN connection for the Linux nodes

8 GPFS: Concepts, Planning, and Installation Guide

6. An AIX cluster with an NSD server (refer to Figure 6). Nodes not directly attached to the disk have

remote access over the HPS to the NSD server.

7. Shared file system access among multiple GPFS clusters (refer to Figure 7 on page 10). The GPFS

clusters sharing file system access may be any supported configuration.

HPS

GPFS

NSD server

Linux

Application

GPFS

NSD server

AIX

ApplicationApplication

GPFS

NSD server

AIX

GPFS

NSD server

Linux

Application

RVSD RVSD

Local Area Network

Figure 5. An AIX and Linux cluster that provides remote access to disks through multiple NSD servers

GPFS

NSD

AIX

Application

GPFS

NSD server

AIX

Application

GPFS

NSD

AIX

Application

High Performance Switch

Figure 6. An AIX cluster with an NSD server

Chapter 1. Introducing General Parallel File System 9

For the latest list of supported cluster configurations, please see the GPFS FAQ at publib.boulder.ibm.com/
infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html.

Interoperable cluster requirements

Consult the GPFS FAQ at publib.boulder.ibm.com/infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/
gpfs_faqs/gpfsclustersfaq.html for any changes to requirements and currently tested:

1. Hardware configurations

2. Software configurations

3. Cluster configurations

Prior to GPFS 3.2, upgrading your system to a new version of GPFS required shutting down GPFS and

upgrading all nodes before you could restart GPFS. However, if you are upgrading a GPFS 3.1 cluster to

GPFS 3.2, you can perform a rolling upgrade with a limited form of backward compatibility. Rolling

upgrades allow you to install new GPFS code one node at a time without shutting down GPFS on other

nodes. However, you must upgrade all nodes within a short time. The time dependency exists because

some GPFS 3.2 features become available on each node as soon as the node is upgraded, while other

features will not become available until you upgrade all participating nodes. Once all nodes have been

migrated to the new code, you must finalize the migration by running the commands mmchconfig

release=LATEST and mmchfs -V all (or mmchfs compat). Once this is done, you can create new file

systems and use such new features as Persistent Reserve (PR) and multiple NSD servers.

Limited backward compatibility allows you to temporarily operate your cluster with a mixture of old and

new nodes. In addition, GPFS requires backward compatibility for multicluster environments. With

backward compatibility, the administrator should be able to upgrade the local cluster while still allowing

mounts from remote nodes in other clusters that have not been upgraded yet. For additional information,

refer to Chapter 7, “Migration, coexistence and compatibility,” on page 59.

These configuration requirements apply to an interoperable GPFS cluster:

v All file systems defined on versions of GPFS prior to version 2.3 must be exported from their old cluster

definition and re-imported into a newly created GPFS 3.2 cluster. Cluster configuration dependencies

and setup changed significantly in GPFS version 2.3. See “Migrating to GPFS 3.2 from GPFS 2.2 or

earlier releases of GPFS” on page 60.

v All nodes serving a set of NSDs must be on a homogenous set of Linux or AIX nodes. An NSD cannot

be split between operating system types. See Figure 5 on page 9.

Figure 7. GPFS clusters providing shared file system access

10 GPFS: Concepts, Planning, and Installation Guide

v For most disk subsystems, all nodes accessing a SAN-attached disk (LUN) must use the same

operating system. Most disk subsystems do not allow you to have Linux nodes and AIX nodes nodes

attached to the same LUN. Refer to the information supplied with your specific disk subsystem for

details about supported configurations.

v Your cluster can have a mix of nodes with GPFS 3.1 (RDMA not available), GPFS 3.2 with RDMA

configured, and GPFS 3.2 without RDMA configured. Only the GPFS 3.2 nodes with RDMA configured

will use RDMA for data transfer between the NSD client and server.

Note: InfiniBand RDMA for Linux X86_64 is supported only on GPFS V3.2 Multiplatform. For the latest

support information, see the GPFS Frequently Asked Questions at publib.boulder.ibm.com/
infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html

Chapter 1. Introducing General Parallel File System 11

|
|
|

12 GPFS: Concepts, Planning, and Installation Guide

Chapter 2. Planning for GPFS

Although you can modify your GPFS configuration after it has been set, a little consideration before

installation and initial setup will reward you with a more efficient and immediately useful file system.

During configuration, GPFS requires you to specify several operational parameters that reflect your

hardware resources and operating environment. During file system creation, you have the opportunity to

specify parameters based on the expected size of the files or allow the default values to take effect. These

parameters define the disks for the file system and how data will be written to them.

Planning for GPFS includes:

v “Hardware requirements”

v “Software requirements”

v “Recoverability considerations” on page 14

v “GPFS cluster creation considerations” on page 20

v “Disk considerations” on page 24

v “File system creation considerations” on page 30

Hardware requirements

There are three steps to consider to meet the hardware requirements. This topic will describe those steps

as well as provide references for more information.

1. Consult the GPFS FAQ at publib.boulder.ibm.com/infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/
gpfs_faqs/gpfsclustersfaq.html for latest list of:

v Supported hardware

v Tested disk configurations

v Maximum cluster size

2. Enough disks to contain the file system. Disks can be:

v SAN-attached to each node in the cluster

v Attached to one or more NSD servers

v A mixture of directly-attached disks and disks that are attached to NSD servers

Refer to “NSD creation considerations” on page 25 for additional information.

3. Since GPFS passes a large amount of data between its daemons, it is suggested that you configure a

dedicated high speed network supporting the IP protocol when you are using GPFS:

v With NSD disks configured with servers providing remote disk capability

v Multiple GPFS clusters providing remote mounting of and access to GPFS file systems

Refer to the GPFS: Advanced Administration Guide for additional information.

GPFS communications require invariant static IP addresses for each specific GPFS node. Any IP address

takeover operations which transfer the address to another computer are not allowed for the GPFS

network. Other IP addresses within the same computer which are not used by GPFS can participate in IP

takeover. GPFS can use virtual IP addresses created by aggregating several network adapters using

techniques such as EtherChannel or channel bonding.

Software requirements

Part of GPFS planning includes understanding the latest software requirements.

© Copyright IBM Corp. 1998, 2008 13

Consult the GPFS FAQ at publib.boulder.ibm.com/infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/
gpfs_faqs/gpfsclustersfaq.html for the latest list of:

v Linux distributions

v Linux kernel versions

v AIX environments

v Windows environments (only Windows Server 2003 R2 x64 is supported)

v OpenSSL levels

Note: When multiple clusters are configured to access the same GPFS file system OpenSSL is used to

authenticate and check authorization for all network connections. In addition, if you use a cipher,

data will be encrypted for transmissions. However, if you set the cipherlist keyword of the

mmauth command to AUTHONLY, only authentication will be used for data transmissions and

data will not be encrypted.

Recoverability considerations

Sound file system planning requires several decisions about recoverability. After you make these

decisions, GPFS parameters enable you to create a highly available file system with fast recoverability

from failures.

v At the file system level, consider replication through the metadata and data replication parameters. See

“File system recoverability parameters” on page 36.

v At the disk level, consider preparing disks for use with your file system by specifying failure groups that

are associated with each disk. With this configuration, information is not vulnerable to a single point of

failure. See “NSD creation considerations” on page 25.

Additionally, GPFS provides several layers of protection against failures of various types:

1. “Node failure”

2. “Network Shared Disk server and disk failure” on page 17

3. “Reduced recovery time using Persistent Reserve” on page 20

Node failure

In the event of a node failure, GPFS:

v Prevents the continuation of I/O from the failing node

v Replays the file system metadata log for the failing node

GPFS prevents the continuation of I/O from a failing node through a GPFS-specific fencing mechanism

called disk leasing. When a node has access to file systems, it obtains disk leases that allow it to submit

I/O. However, when a node fails, that node cannot obtain or renew a disk lease. When GPFS selects

another node to perform recovery for the failing node, it first waits until the disk lease for the failing node

expires. This allows for the completion of previously submitted I/O and provides for a consistent file system

metadata log. Waiting for the disk lease to expire also avoids data corruption in the subsequent recovery

step. For further information on recovery from node failure, see the GPFS: Problem Determination Guide.

File system recovery from node failure should not be noticeable to applications running on other nodes.

The only noticeable effect may be a delay in accessing objects being modified on the failing node.

Recovery involves rebuilding metadata structures which may have been under modification at the time of

the failure. If the failing node is the file system manager for the file system, the delay will be longer and

proportional to the activity on the file system at the time of failure. However, administrative intervention will

not be needed.

Note: If usePersistentReserve is enabled, GPFS prevents the continuation of I/O from a failing node by

fencing the failed node using Persistent Reserve (SCSI-3 protocol). Persistent Reserve allows the

14 GPFS: Concepts, Planning, and Installation Guide

|

failing node to recover faster. GPFS does not need to wait for the disk lease on the failing node to

expire. For additional information, refer to “Reduced recovery time using Persistent Reserve” on

page 20.

Quorum

During node failure situations, quorum needs to be maintained in order to recover the failing nodes. If

quorum is not maintained due to node failure, GPFS unmounts local file systems on the remaining nodes

and attempts to reestablish quorum, at which point file system recovery occurs. For this reason it is

important that the set of quorum nodes be carefully considered (refer to “Selecting quorum nodes” on page

17 for additional information).

GPFS quorum must be maintained within the cluster for GPFS to remain active. If the quorum semantics

are broken, GPFS performs recovery in an attempt to achieve quorum again. GPFS can use one of two

methods for determining quorum:

v Node quorum

v Node quorum with tiebreaker disks.

Node quorum: Node quorum is the default quorum algorithm for GPFS. With node quorum:

v Quorum is defined as one plus half of the explicitly defined quorum nodes in the GPFS cluster.

v There are no default quorum nodes, you must specify which nodes have this role.

v GPFS does not limit the number of quorum nodes.

For example, in Figure 8, there are six quorum nodes. In this configuration, GPFS remains active as long

as there are four quorum nodes available.

Node quorum with tiebreaker disks: Node quorum with tiebreaker disks allows you to run with as little

as one quorum node available as long as you have access to a majority of the quorum disks (refer to

Figure 9 on page 17). Switching to quorum with tiebreaker disks is accomplished by indicating a list of one

to three disks to use on the tiebreakerDisks parameter on the mmchconfig command.

High Performance Switch

qq

s - secondary cluster configuration server

p - primary cluster configuration server

qq

nq - non-quorum node

q - quorum node

NSD - NSD server

NSD NSD

q

NSD
nq nq

NSD
nq

q
nq

s p

Figure 8. GPFS configuration utilizing node quorum

Chapter 2. Planning for GPFS 15

When utilizing node quorum with tiebreaker disks, there are specific rules for cluster nodes and for

tiebreaker disks.

Cluster node rules:

1. There is a maximum of eight quorum nodes.

2. You should include the primary and secondary cluster configuration servers as quorum nodes.

3. You may have an unlimited number of non-quorum nodes.

Changing quorum semantics:

1. If you exceed eight quorum nodes, you must disable node quorum with tiebreaker disks and restart

GPFS daemon using the default node quorum configuration. To disable node quorum with tiebreaker

disks:

a. Shutdown the GPFS daemon by issuing mmshutdown -a on all nodes.

b. Change quorum semantics by issuing mmchconfig tiebreakerdisks=no.

c. Add quorum nodes.

d. Restart the GPFS daemon by issuing mmstartup -a on all nodes.

2. If you remove quorum nodes and the new configuration has less than eight quorum nodes, you can

change the configuration to node quorum with tiebreaker disks. To enable quorum with tiebreaker

disks:

a. Shutdown the GPFS daemon by issuing mmshutdown -a on all nodes.

b. Delete the quorum nodes.

c. Change quorum semantics by issuing the mmchconfig tiebreakerdisks=″diskList″ command.

v The diskList contains the names of the tiebreaker disks.

v The list contains the NSD names of the disks, preferably one or three disks, separated by a

semicolon (;) and enclosed by quotes.

d. Restart the GPFS daemon by issuing mmstartup -a on all nodes.

Tiebreaker disk rules:

v You can have one, two, or three tiebreaker disks. However, you should use an odd number of

tiebreaker disks.

v Tiebreaker disks must be defined through the mmcrnsd command.

v Tiebreaker disks must use one of following attachments to the quorum nodes:

– fibre-channel SAN

– IP SAN

– virtual shared disks

In Figure 9 on page 17 GPFS remains active with the minimum of a single available quorum node and two

available tiebreaker disks.

16 GPFS: Concepts, Planning, and Installation Guide

Selecting quorum nodes

To configure a system with efficient quorum nodes, follow these rules:

v Select nodes that are likely to remain active

– If a node is likely to be rebooted or require maintenance, do not select that node as a quorum node.

v Select nodes that have different failure points such as:

– Nodes located in different racks

– Nodes connected to different power panels

v You should select nodes that GPFS administrative and serving functions rely on such as:

– Primary configuration servers

– Secondary configuration servers

– Network Shared Disk servers

v Select an odd number of nodes as quorum nodes

– The suggested maximum is seven quorum nodes.

v Having a large number of quorum nodes may increase the time required for startup and failure recovery.

– Having more than seven quorum nodes does not guarantee higher availability.

Note: Windows nodes cannot be selected as quorum nodes.

Network Shared Disk server and disk failure

The three most common reasons why data becomes unavailable are:

v Disk failure

v Disk server failure with no redundancy

v Failure of a path to the disk

p
q

NSD

s
q

NSD

t t t

s - secondary cluster configuration server

p - primary cluster configuration server

nqnq

nq - non-quorum node

local area network

q - quorum node

NSD - NSD server

t - tiebreaker disk

Figure 9. GPFS configuration utilizing node quorum with tiebreaker disks

Chapter 2. Planning for GPFS 17

|

In the event of a disk failure in which GPFS can no longer read or write to the disk, GPFS will discontinue

use of the disk until it returns to an available state. You can guard against loss of data availability from

disk failure by:

v Utilizing hardware data replication as provided by a Redundant Array of Independent Disks (RAID)

device

v Utilizing the GPFS data and metadata replication features (see “High recoverability and increased data

availability” on page 3) along with the designation of failure groups (see “NSD creation considerations”

on page 25)

Figure 10. RAID/ESS Controller twin-tailed in a SAN configuration

GPFS

NSD Server

Disk Controller

GPFS

NSD Server

P

Figure 11. GPFS configuration specifying multiple NSD servers connected to a common disk controller utilizing RAID5

with four data disks and one parity disk

18 GPFS: Concepts, Planning, and Installation Guide

In general, it is suggested that you consider RAID as the first level of redundancy for your data and add

GPFS replication if you desire additional protection.

In the event of a disk server failure in which GPFS can no longer contact the node that provides remote

access to a disk, GPFS will again discontinue use of the disk. You can guard against loss of disk server

availability by using common disk connectivity on multiple nodes and specifying multiple Network Shared

Disk servers for the common disk.

In the event of failure of a path to the disk:

v If a virtual shared disk server goes down and GPFS reports a disk failure, follow the instructions in the

RSCT for AIX 5L Managing Shared Disks manual for the level of your system to check the state of the

virtual shared disk path to the disk.

v If a SAN failure removes the path to the disk and GPFS reports a disk failure, follow the directions

supplied by your storage vendor to distinguish a SAN failure from a disk failure.

You can guard against loss of data availability from failure of a path to a disk by:

v Creating multiple NSD servers for all disks. As GPFS determines the available connections to disks in

the file system, it is recommended that you always define NSD servers for the disks. GPFS allows you

to define up to eight NSD servers for each NSD. In a SAN configuration where NSD servers have also

been defined, if the physical connection is broken, GPFS dynamically switches to the next available

NSD server (as defined on the server list) and continues to provide data. When GPFS discovers that

the path has been repaired, it falls back to local disk access. This is the default behavior, which can be

changed with the -o useNSDserver file system mount option on the mmchfs, mmmount,

mmremotefs, and mount commands.

v Using the Multiple Path I/O (MPIO) feature of AIX to define alternate paths to a device for failover

purposes. Failover is a path-management algorithm that improves the reliability and availability of a

device because the system automatically detects when one I/O path fails and reroutes I/O through an

alternate path. All Small Computer System Interface (SCSI) Self Configured SCSI Drive (SCSD) disk

drives are automatically configured as MPIO devices. Other devices can be supported, providing the

device driver is compatible with the MPIO implementation in AIX. For more information about MPIO, see

the:

– AIX 5L Version 5.3 System Management Concepts: Operating System and Devices book and search

on Multi-path I/O.

– AIX 5L Version 5.3 System Management Guide: Operating System and Devices book and search on

Multi-path I/O.

local area network

NSD
server

NSD
server

NSD
server

NSD
server

failure group 1 failure group 2

Figure 12. GPFS utilizes failure groups to minimize the probability of a service disruption due to a single component

failure

Chapter 2. Planning for GPFS 19

v Use Subsystem Device Driver (SDD) or Subsystem Device Driver Path Control Module (SDDPCM) to

give the AIX host the ability to access multiple paths to a single LUN within an Enterprise Storage

Server® (ESS). This ability to access a single logical unit number (LUN) on multiple paths allows for a

higher degree of data availability in the event of a path failure. Data can continue to be accessed within

the ESS as long as there is at least one available path. Without one of these installed, you will lose

access to the LUN in the event of a path failure. For additional information about:

– SSD, refer to http://www.ibm.com/server/storage/support/software/sdd/

– SDDPCM, refer to http://www.ibm.com/support/docview.wss?uid=ssg1S4000201

Reduced recovery time using Persistent Reserve

Persistent Reserve (PR) provides a mechanism for reducing recovery times from node failures. To enable

PR and to obtain recovery performance improvements, your cluster requires a specific environment:

v All disks must be PR-capable

v All disks must be hdisks

v If the disks have defined NSD servers, all NSD server nodes must be running AIX

v If the disks are SAN-attached to all nodes, all nodes in the cluster must be running AIX

You must explicitly enable PR using the usePersistentReserve option of the mmchconfig command. If

you set usePersistentReserve=yes, GPFS will attempt to setup PR on all the PR capable disks. All

subsequent NSDs will be created with PR enabled if they are PR capable. However, PR will only be

supported in the home cluster. Therefore, remote mounts must access PR disks through an NSD server

that is in the home cluster.

GPFS cluster creation considerations

To create GPFS clusters, issue the mmcrcluster command. This topic describes the GPFS cluster

creation options.

Table 2 details:

v The GPFS cluster creation options provided by the mmcrcluster command

v How to change the options

v What the default values are for each option

Note: Refer to the GPFS: Advanced Administration Guide for information on accessing GPFS file systems

in remote clusters and large cluster administration.

 Table 2. GPFS cluster creation options

Cluster option

Command to change the

option Default value

“Nodes in your GPFS cluster” on page

21

Add nodes through the

mmaddnode command or

delete nodes through the

mmdelnode command

None

Node designation: Manager or client,

see “Nodes in your GPFS cluster” on

page 21

mmchnode Client

Node designation: Quorum or

non-quorum, see “Nodes in your GPFS

cluster” on page 21

mmchnode Non-quorum

Primary cluster configuration server,

see “GPFS cluster configuration

servers” on page 22

mmchcluster None

20 GPFS: Concepts, Planning, and Installation Guide

|

|

|

|

Table 2. GPFS cluster creation options (continued)

Cluster option

Command to change the

option Default value

Secondary cluster configuration server,

see “GPFS cluster configuration

servers” on page 22

mmchcluster None

“Remote shell command” on page 22 mmchcluster /usr/bin/rsh

“Remote file copy command” on page

23

mmchcluster /usr/bin/rcp

“Cluster name” on page 23

mmchcluster

The node name of the primary GPFS

cluster configuration server

GPFS administration adapter port

name, see “GPFS node adapter

interface names”

mmchnode

Same as the GPFS communications

adapter port name

GPFS communications adapter port

name, see “GPFS node adapter

interface names”

mmchnode None

“User ID domain for the cluster” on

page 23

mmchconfig The name of the GPFS cluster

“Starting GPFS automatically” on page

23

mmchconfig No

“Cluster configuration file” on page 23 mmchconfig None

“Managing distributed tokens” on page

24

mmchconfig Yes

GPFS node adapter interface names

An adapter interface name refers to the hostname or IP address that GPFS uses to communicate with a

node. Specifically, the hostname or IP address identifies the communications adapter over which the

GPFS daemons or GPFS administration commands communicate. GPFS permits the administrator to

specify two node adapter interface names for each node in the cluster:

GPFS node name

Specifies the name of the node adapter interface to be used by the GPFS daemons for internode

communication.

GPFS admin node name

Specifies the name of the node adapter interface to be used by GPFS administration commands

when communicating between nodes. If not specified, the GPFS administration commands use the

same node adapter interface used by the GPFS daemons.

These names can be specified by means of the node descriptors passed to the mmaddnode,

mmchcnode, or mmcrcluster command.

Nodes in your GPFS cluster

When you create your GPFS cluster you must provide a file containing a list of node descriptors, one per

line, for each node to be included in the cluster. GPFS stores this information on the “GPFS cluster

configuration servers” on page 22. Each descriptor must be specified in the form:

NodeName:NodeDesignations:AdminNodeName

NodeName

The host name or IP address of the node for GPFS daemon-to-daemon communication.

Chapter 2. Planning for GPFS 21

The host name or IP address that is used for a node must refer to the communication adapter

over which the GPFS daemons communicate. Alias names are not allowed. You can specify an IP

address at NSD creation, but it will be converted to a host name that must match the GPFS node

name. You can specify a node using any of these forms:

v Short hostname (for example, h135n01)

v Long hostname (for example, h135n01.frf.ibm.com)

v IP address (for example, 7.111.12.102)

NodeDesignations

An optional, ″-″ separated list of node roles.

v manager | client – Indicates whether a node is part of the node pool from which file system

managers and token managers can be selected. The special functions of the file system

manager consume extra processing time. See “The file system manager” on page 80. The

default is to not have the node included in the pool.

In general, small systems do not need multiple nodes dedicated for the file system manager.

However, if you are running large parallel jobs, threads scheduled to a node performing these

functions may run slower. As a guide, in a large system there should be a different file system

manager node for each GPFS file system.

v quorum | nonquorum – This designation specifies whether or not the node should be included

in the pool of nodes from which quorum is derived. The default is non-quorum. You must

designate at least one node as a quorum node. It is recommended that you designate the

primary and secondary cluster configuration servers and NSD servers as quorum nodes.

How many quorum nodes you designate depends upon whether you use node quorum or node

quorum with tiebreaker disks. See “Quorum” on page 15.

AdminNodeName

Specifies an optional field that consists of a node name to be used by the administration

commands to communicate between nodes.

 If AdminNodeName is not specified, the NodeName value is used.

You must follow these rules when creating your GPFS cluster:

v While a node may mount file systems from multiple clusters, the node itself may only be added to a

single cluster through either the mmcrcluster command or the mmaddnode command.

v The default quorum type is node quorum. To enable node quorum with tiebreaker disks, you must issue

the mmchconfig command.

v The node must be available for the command to be successful. If any of the nodes listed are not

available when the command is issued, a message listing those nodes is displayed. You must correct

the problem on each node, create a new input file containing the failed nodes only, and issue the

mmaddnode command to add those nodes.

GPFS cluster configuration servers

You must designate one of the nodes in your GPFS cluster as the primary GPFS cluster configuration

server, where GPFS configuration information is maintained. It is strongly suggested that you also specify

a secondary GPFS cluster configuration server.

 Attention: If your primary server fails and you have not designated a secondary server, the GPFS

cluster configuration data files are inaccessible and any GPFS administration commands that are issued,

fail. Similarly, when the GPFS daemon starts up, at least one of the two GPFS cluster configuration

servers must be accessible. See “Cluster configuration data files” on page 93.

Remote shell command

The default remote shell command is rsh. This requires that a properly configured .rhosts file exist in the

root user’s home directory on each node in the GPFS cluster.

22 GPFS: Concepts, Planning, and Installation Guide

If you choose to designate the use of a different remote shell command on either the mmcrcluster or the

mmchcluster command, you must specify the fully qualified pathname for the program to be used by

GPFS. You must also ensure:

1. Proper authorization is granted to all nodes in the GPFS cluster.

2. The nodes in the GPFS cluster can communicate without the use of a password.

The remote shell command must adhere to the same syntax as rsh but may implement an alternate

authentication mechanism.

Note: If a Windows node is in the cluster, rsh cannot be used.

Remote file copy command

The default remote file copy program is rcp. This requires that a properly configured .rhosts file exist in

the root user’s home directory on each node in the GPFS cluster.

If you choose to designate the use of a different remote file copy command on either the mmcrcluster or

the mmchcluster command, you must specify the fully-qualified pathname for the program to be used by

GPFS. You must also ensure:

1. Proper authorization is granted to all nodes in the GPFS cluster.

2. The nodes in the GPFS cluster can communicate without the use of a password.

The remote copy command must adhere to the same syntax as rcp but may implement an alternate

authentication mechanism.

Note: If a Windows node is in the cluster, rcp cannot be used.

Cluster name

Provide a name for the cluster by issuing the -C option on the mmcrcluster command. If the

user-provided name contains dots, it is assumed to be a fully qualified domain name. Otherwise, to make

the cluster name unique in a multiple cluster environment, GPFS appends the domain name of the primary

cluster configuration server. If the -C option is not specified, the cluster name defaults to the hostname of

the primary cluster configuration server. The name of the cluster may be changed at a later time by issuing

the -C option on the mmchcluster command.

The cluster name is applicable when GPFS file systems are mounted by nodes belonging to other GPFS

clusters. See the mmauth and the mmremotecluster commands.

User ID domain for the cluster

The user ID domain for a cluster when accessing a file system remotely. This option is further explained in

the GPFS: Advanced Administration Guide and the white paper entitled UID Mapping for GPFS in a

Multi-Cluster Environment at www.ibm.com/servers/eserver/clusters/library/wp_aix_lit.html

Starting GPFS automatically

Specify whether to start GPFS automatically on all nodes in the cluster whenever they come up with the

autoload attribute. The default is for GPFS to not automatically start GPFS on all nodes. You may change

this by specifying the autoload=yes on the mmchconfig command. This eliminates the need to start

GPFS by issuing the mmstartup command when a node comes back up.

Cluster configuration file

GPFS provides you with default configuration options that may generically apply to most systems. You

may:

Chapter 2. Planning for GPFS 23

|

|

v Accept the system defaults at cluster creation time and tune your system after the cluster is created by

issuing the mmchconfig command (see Chapter 8, “Configuring and tuning your system for GPFS,” on

page 67). This is the suggested method.

v Experienced users may use a customized cluster configuration file on the mmcrcluster command. For

detailed information, please see the GPFS: Administration and Programming Reference.

Managing distributed tokens

GPFS implements distributed locking using token-based lock management. In GPFS, the

distributedTokenServer option of the mmchconfig command allows you to distribute the token server

workload over multiple token manager nodes in a cluster. Distributing token management among file

system manager nodes reduces system delays associated with a lockable object waiting to obtaining a

token.

When the file system is mounted initially, the file system manager is the only token server. However, when

the number of external mounts reaches a threshold, the file system manager appoints additional manager

nodes as token servers.

Note:

1. The total number of token manager nodes depends on the number of manager nodes you

defined in the cluster.

2. If you designated only one node as a manager node, you can have only one token server.

3. Once the token state has been distributed, it remains distributed until all external mounts have

gone away.

4. The maxFilesToCache and maxStatCache parameters are indirectly affected by multiple token

manager nodes as distributing tokens across multiple nodes could allow more tokens than if you

only had one token server.

5. Refer to the General Parallel File System: Advanced Administration Guide for details on

distributed token managers.

Disk considerations

Proper planning for your GPFS installation includes ensuring the disk considerations listed in this topic.

Do the following:

v Ensure that you have sufficient disks to meet the expected I/O load. In GPFS terminology, a disk may

be a physical disk or a RAID device. With GPFS 2.3 or later, you may have up to 268 million disks in

the file system.

Note:

1. The actual number of disks in your system may be constrained by products other than the

version of GPFS installed on your system.

2. With file systems created with GPFS 2.3 or later, the theoretical limit on the maximum

number of disks in a file system has been increased from 4096 to approximately 268 million.

However, the actual limit enforced by the current version of GPFS is 2048. It can be

increased if necessary (please contact IBM to discuss increasing the limit).

v Ensure that you have sufficient free disk space.

If your system contains AIX nodes with NSDs created on existing virtual shared disks, sufficient free

disk space needs to be kept in /var for the correct operation of the IBM Recoverable Virtual Shared

Disk component. While GPFS does not use large amounts of /var, this component requires several

megabytes to correctly support GPFS recovery. Failure to supply this space on all nodes may appear as

a hang in your GPFS file system when recovering failed nodes.

24 GPFS: Concepts, Planning, and Installation Guide

v Ensure that you have sufficient connectivity (adapters and buses) between disks and network shared

disk servers.

v Decide how your disks will be connected. Supported types of disk connectivity include:

1. All disks are SAN-attached to all nodes in all clusters which access the file.

In this configuration, every node sees the same disk simultaneously and has a corresponding disk

device entry in /dev.

2. Each disk is connected to multiple NSD server nodes (up to eight servers), as specified on the

server list.

In this configuration, a single node with connectivity to a disk performs data shipping to all other

nodes. This node is the first NSD server specified on the NSD server list. You can define additional

NSD servers on the server list. Having multiple NSD servers guards against the loss of a single

NSD server. When using multiple NSD servers, all NSD servers must have connectivity to the same

disks. In this configuration, all nodes that are not NSD servers will receive their data over the local

area network from the first NSD server on the server list. If the first NSD server fails, the next

available NSD server on the list will control data distribution.

3. A combination of SAN-attached and an NSD server configuration.

Configuration consideration:

– If the node has a physical or virtual attachment to the disk and that connection fails, the node

switches to using a specified NSD server to perform I/O. For this reason, it is recommended that you

define NSDs with multiple servers, even if all nodes have physical attachments to the disk.

– Configuring GPFS disks without an NSD server stops the serving of data when the direct path to the

disk is lost. This may be a preferable option for nodes requiring a higher speed data connection

provided through a SAN as opposed to a lower speed network NSD server connection. Parallel jobs

using MPI often have this characteristic.

– The -o useNSDserver file system mount option on the mmmount, mount, mmchfs, and

mmremotefs commands can be used to specify the disk discovery, and limit or eliminate switching

from local access to NSD server access, or the other way around.

v Decide if you will use storage pools to manage your disks.

Storage pools allow you to manage your file system’s storage in groups. You may now partition your

storage based on such factors as performance, locality, and reliability. Files are assigned to a storage

pool based on defined policies.

Policies provide for:

– Placing files in a specific storage pool when the files are created

– Migrating files from one storage pool to another

– File deletion based on file characteristics

– Snapshot management

See the GPFS: Advanced Administration Guide for more information.

Disk considerations include:

1. “NSD creation considerations”

2. “NSD server considerations” on page 28

3. “File system descriptor quorum” on page 29

NSD creation considerations

You must prepare each physical disk you intend to use with GPFS as an NSD through the mmcrnsd

command. NSDs can be created on:

v Physical disks

– An hdisk or vpath on AIX

– A block disk device or a disk partition on Linux

Chapter 2. Planning for GPFS 25

Note: An NSD cannot be created on disks that are attached to Windows (that is, a Windows node

cannot be specified as an NSD server).

v Virtual shared disks:

– An RSCT peer domain virtual shared disk, see Reliable Scalable Cluster Technology: Managing

Shared Disks

Note: When you are using the High Performance Switch (HPS) in your configuration it is suggested you

process your disks in two steps:

1. Create virtual shared disks on each physical disk through the mmcrvsd command.

2. Using the rewritten disk descriptors from the mmcrvsd command, create NSDs through the

mmcrnsd command.

The mmcrnsd command expects as input a file, DescFile, containing a disk descriptor, one per line, for

each of the disks to be processed. Disk descriptors have the format:

DiskName:ServerList::DiskUsage:FailureGroup:DesiredName:StoragePool

DiskName

 The block device name that appears in /dev for the disk you want to define as an NSD. Examples

of disks that are accessible through a block device are SAN-attached disks or virtual shared disks.

If a server node is specified, DiskName must be the /dev name for the disk device of the first NSD

server node defined in the server list. See the Frequently Asked Questions at

publib.boulder.ibm.com/infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/ gpfs_faqs/
gpfsclustersfaq.html for the latest supported disk types.

In the AIX environment, GPFS provides the mmcrvsd command to ease configuration of virtual

shared disks. This command allows you to configure a virtual shared disk and make it accessible

to nodes connected over a High Performance Switch. In addition, you can use the output disk

descriptor file from the mmcrvsd command as input to the mmcrnsd command.

Note: The virtual shared disk names listed in output disk descriptor file appear as /dev block

devices on switch attached nodes.

ServerList

A comma-separated list of NSD server nodes having the form:

server1[,server2,...,server8]

You can specify up to eight NSD servers in this list. The defined NSD will preferentially use the

first server on the list. If the first server is not available, the NSD will use the next available server

on the list. If you do not define a server list, GPFS assumes that the disk is SAN-attached to all

nodes in the cluster. If all nodes in the cluster do not have access to the disk, or if the file system

to which the disk belongs is to be accessed by other GPFS clusters, you must specify a server

list.

DiskUsage

Specify a disk usage or accept the default. This field is ignored by the mmcrnsd command, and is

passed unchanged to the output descriptor file produced by the mmcrnsd command. Possible

values are:

v dataAndMetadata – Indicates that the disk contains both data and metadata. This is the default

for the system storage pool.

v dataOnly – Indicates that the disk contains data and does not contain metadata. This is the

default for storage pools other than the system storage pool.

v metadataOnly – Indicates that the disk contains metadata and does not contain data.

v descOnly – Indicates that the disk contains no data and no metadata. Such a disk is used

solely to keep a copy of the file system descriptor, and can be used as a third failure group in

certain disaster recovery configurations.

26 GPFS: Concepts, Planning, and Installation Guide

|
|

FailureGroup

A number identifying the failure group to which this disk belongs. You can specify any value from

-1 to 4000 (where -1 indicates that the disk has no point of failure in common with any other disk).

If you do not specify a failure group, the value defaults to the node number plus 4000 for the first

NSD server defined in the server list. If you do not specify an NSD server, the value defaults to -1.

GPFS uses this information during data and metadata placement to ensure that no two replicas of

the same block are written in such a way as to become unavailable due to a single failure. All

disks that are attached to the same NSD server or adapter should be placed in the same failure

group.

 This field is ignored and passed unchanged to the output descriptor file written by either the

mmcrnsd command or the mmcrvsd command.

DesiredName

Specify the name you desire for the NSD to be created. This name must not already be used as

another GPFS disk name, and it must not begin with the reserved string ’gpfs’.

Note: This name can contain only the characters: ’A’ through ’Z’, ’a’ through ’z’, ’0’ through ’9’, or

’_’ (the underscore). All other characters are not valid.

If a desired name is not specified, the NSD is assigned a name according to the convention:

gpfsNNnsd

where NN is a unique nonnegative integer not used in any prior NSD.

StoragePool

Specifies the name of the storage pool that the NSD is assigned to. Storage pool names:

v Must be unique within a file system, but not across file systems

v Should not be larger than 255 alphanumeric characters

v Are case sensitive

– MYpool and myPool are distinct storage pools

If this name is not provided, the default is system. Only the system pool may contain

metadataOnly, dataAndMetadata, or descOnly disks.

Upon successful completion of the mmcrnsd command the disk descriptors in the input file are rewritten:

v The original descriptor line is copied and commented out.

v The physical device name is replaced with the assigned unique global name.

v The NSD server names defined in the server list are omitted.

v The DiskUsage, FailureGroup, and StoragePool fields, when provided by the user, are not changed. If

the those values are not provided, the appropriate default values are inserted.

The rewritten disk descriptor file, DescFile, can then be used as input to the mmcrfs, mmadddisk, or the

mmrpldisk commands. The Disk Usage and FailureGroup specifications in the disk descriptor are only

preserved in the DescFile file rewritten by the mmcrnsd command. If you do not use this file, you must

accept the default values or specify these values when creating disk descriptors for subsequent mmcrfs,

mmadddisk, or mmrpldisk commands.

If necessary, the NSD server nodes for an existing NSD can be changed later with the mmchnsd

command. Similarly the DiskUsage and FailureGroup values for a disk can be changed with the

mmchdisk command. StoragePools can be changed by deleting a disk and adding it back in with the

changed pool name. The global NSD name cannot be changed.

Chapter 2. Planning for GPFS 27

Table 3 details the use of disk descriptor information by the GPFS disk commands:

 Table 3. Disk descriptor usage for the GPFS disk commands

mmcrnsd mmcrvsd mmchnsd mmchdisk mmcrfs default value

Disk name X X X X X none

Server list X X X NA NA none

Disk usage

X X NA X X

dataAndMetadata for

system storage pool

Otherwise, dataOnly for all

other storage pools

Failure group

X X NA X X

-1 for disks directly

attached to all nodes in the

cluster

Otherwise, node number

plus 4000 for the first NSD

server that is defined in the

server list

Desired

name X X NA NA NA

gpfsNNnsd, where NN is a

unique nonnegative integer

not used in any prior NSD

Storage pool X X NA NA X system

Note:

1. X – indicates the option is processed by the command

2. NA (not applicable) – indicates the option is not processed by the command

NSD server considerations

If you plan to use NSD servers to remotely serve disk data to other nodes, as opposed to having disks

SAN-attached to all nodes, you should consider the total computing and I/O load on these nodes:

v Will your Network Shared Disk servers be dedicated servers or will you also be using them to run

applications? If you will have non-dedicated servers, consider running less time-critical applications on

these nodes. If you run time-critical applications on a Network Shared Disk server, servicing disk

requests from other nodes might conflict with the demands of these applications.

v The special functions of the file system manager consume extra processing time. If possible, avoid

using a Network Shared Disk server as the file system manager. The Network Shared Disk server

consumes both memory and processor cycles that could impact the operation of the file system

manager. See “The file system manager” on page 80.

v The actual processing capability required for Network Shared Disk service is a function of the

application I/O access patterns, the type of node, the type of disk, and the disk connection. You can

later run iostat on the server to determine how much of a load your access pattern will place on a

Network Shared Disk server.

v Providing sufficient disks and adapters on the system to yield the required I/O bandwidth. Dedicated

Network Shared Disk servers should have sufficient disks and adapters to drive the I/O load you expect

them to handle.

v Knowing approximately how much storage capacity you will need for your data.

You should consider what you want as the default behavior for switching between local access and NSD

server access in the event of a failure. To set this configuration, use the -o useNSDserver file system

mount option of the mmmount, mount, mmchfs, and mmremotefs commands to:

v Specify the disk discovery behavior

v Limit or eliminate switching from either:

28 GPFS: Concepts, Planning, and Installation Guide

– Local access to NSD server access

– NSD server access to local access

You should consider specifying how long to wait for an NSD server to come online before allowing a file

system mount to fail because the server is not available. The mmchconfig command has these options:

nsdServerWaitTimeForMount

When a node is trying to mount a file system whose disks depend on NSD servers, this option

specifies the number of seconds to wait for those servers to come up. If a server recovery is

taking place, the wait time you are specifying with this option starts after recovery completes.

Note: The decision to wait for servers is controlled by the nsdServerWaitTimeWindowOnMount

option.

nsdServerWaitTimeWindowOnMount

Specifies a window of time (in seconds) during which a mount can wait for NSD servers as

described for the nsdServerWaitTimeForMount option. The window begins when quorum is

established (at cluster startup or subsequently), or at the last known failure times of the NSD

servers required to perform the mount.

Note:

1. When a node rejoins a cluster, it resets all the failure times it knew about within that

cluster.

2. Because a node that rejoins a cluster resets its failure times within that cluster, the NSD

server failure times are also reset.

3. When a node attempts to mount a file system, the GPFS code checks the cluster

formation criteria first. If that check falls outside the window, it will then check for NSD

server fail times being in the window.

File system descriptor quorum

There is a structure in GPFS called the file system descriptor that is initially written to every disk in the file

system, but is replicated on a subset of the disks as changes to the file system occur, such as adding or

deleting disks. Based on the number of failure groups and disks, GPFS creates between one and five

replicas of the descriptor:

v If there are at least five different failure groups, five replicas are created.

v If there are at least three different disks, three replicas are created.

v If there are only one or two disks, a replica is created on each disk.

Once it is decided how many replicas to create, GPFS picks disks to hold the replicas, so that all replicas

will be in different failure groups, if possible, to reduce the risk of multiple failures. In picking replica

locations, the current state of the disks is taken into account. Stopped or suspended disks are avoided.

Similarly, when a failed disk is brought back online, GPFS may modify the subset to rebalance the file

system descriptors across the failure groups. The subset can be found by issuing the mmlsdisk -L

command.

GPFS requires a majority of the replicas on the subset of disks to remain available to sustain file system

operations:

v If there are at least five different failure groups, GPFS will be able to tolerate a loss of two of the five

groups. If disks out of three different failure groups are lost, the file system descriptor may become

inaccessible due to the loss of the majority of the replicas.

v If there are at least three different failure groups, GPFS will be able to tolerate a loss of one of the three

groups. If disks out of two different failure groups are lost, the file system descriptor may become

inaccessible due to the loss of the majority of the replicas.

Chapter 2. Planning for GPFS 29

v If there are fewer than three failure groups, a loss of one failure group may make the descriptor

inaccessible.

If the subset consists of three disks and there are only two failure groups, one failure group must have

two disks and the other failure group has one. In a scenario that causes one entire failure group to

disappear all at once, if the half of the disks that are unavailable contain the single disk that is part of

the subset, everything stays up. The file system descriptor is moved to a new subset by updating the

remaining two copies and writing the update to a new disk added to the subset. But if the downed

failure group contains a majority of the subset, the file system descriptor cannot be updated and the file

system has to be force unmounted.

Introducing a third failure group consisting of a single disk that is used solely for the purpose of

maintaining a copy of the file system descriptor can help prevent such a scenario. You can designate

this disk by using the descOnly designation for disk usage on the disk descriptor. With the descOnly

designation, the disk does not hold any of the other file system data or metadata and can be as small

as 4 MB. See NSD creation considerations in GPFS: Concepts, Planning, and Installation Guide and

Establishing disaster recovery for your GPFS cluster in GPFS: Advanced Administration Guide.

File system creation considerations

File system creation involves anticipating usage within the file system and considering your hardware

configurations. Before creating a file system, consider how much data will be stored and how great the

demand for the files in the system will be.

Each of these factors can help you to determine how much disk resource to devote to the file system,

which block size to choose, where to store data and metadata, and how many replicas to maintain. For the

latest supported file system size, see the GPFS FAQ at publib.boulder.ibm.com/infocenter/clresctr/topic/
com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html.

Your GPFS file system is created by issuing the mmcrfs command. Table 4 details the file system creation

options specified on the mmcrfs command, which options can be changed later with the mmchfs

command, and what the default values are.

To move an existing file system into a new GPFS cluster, see Exporting file system definitions between

clusters in the GPFS: Administration and Programming Reference.

 Table 4. File system creation options

Options mmcrfs mmchfs Default value

Device name of the file system

See “Device name of the file

system” on page 32.

X X none

-D {nfs4 | posix} semantics for a

’deny-write open lock’

See “NFS V4 ’deny-write open

lock’” on page 33.

X X posix

DiskDesc for each disk in your file

system

See “Disks for your file system” on

page 33.

X

Issue the mmadddisk or mmdeldisk

command to add or delete disks from the

file system.

none

-F DescFile specifies a file that

contains a list of disk descriptors,

one per line.

See “List of disk descriptors” on

page 32.

X

Issue the mmadddisk or mmdeldisk

command to add or delete a file that

contains a list of disk descriptors. none

30 GPFS: Concepts, Planning, and Installation Guide

Table 4. File system creation options (continued)

Options mmcrfs mmchfs Default value

-A {yes | no | automount} to

determine when to mount the file

system.

See “Deciding how the file system

is mounted” on page 33.

X X yes

-B BlockSize to set the data block

size: 16K, 64K, 256K, 512K, 1M,

2M, or 4M.

See “Block size” on page 33.

X

This value cannot be changed without

re-creating the file system.

256K

-E {yes | no} to report exact

mtime values.

See “mtime values” on page 35.

X X yes

-j {cluster | scatter} to determine

the block allocation map type.

See “Block allocation map” on

page 35.

X NA

See “Block allocation

map” on page 35.

-k {posix | nfs4 |all} to determine

the authorization types supported

by the file system.

See “File system authorization” on

page 35.

X X posix

-K {no | whenpossible | always}

to enforce strict replication.

See “Strict replication” on page

35.

X X whenpossible

-L LogFileSize to specify the size

of the internal log file.

See “GPFS recovery logs” on

page 83.

X NA 4 MB

-m DefaultMetadataReplicas

See “File system recoverability

parameters” on page 36.

X X 1

-M MaxMetadataReplicas

See “File system recoverability

parameters” on page 36.

X This value cannot be changed. 2

-N NumInodes to determine the

maximum number of files in the

file system.

See “Maximum number of files” on

page 37.

X

Use the -F option.

file system size/1 MB

-n NumNodes that will mount the

file system.

See “Number of nodes mounting

the file system” on page 37.

X

This value cannot be changed after the

file system has been created.

32

Chapter 2. Planning for GPFS 31

Table 4. File system creation options (continued)

Options mmcrfs mmchfs Default value

-o MountOptions to be passed to

the mount command.

See “Assign mount command

options” on page 37.

NA X none

-Q {yes | no } to activate quota.

See Activate quotas.

X X no

-r DefaultDataReplicas

See “File system recoverability

parameters” on page 36.

X X 1

-R MaxDataReplicas

See “File system recoverability

parameters” on page 36.

X

This value cannot be changed.

2

-S {yes | no} to suppress periodic

updating of atime values.

See “atime values” on page 34.

X X no

-t DriveLetter

See “Windows drive letter” on

page 37.

X X none

-T Mountpoint

See “Mountpoint directory” on

page 37.

X X /gpfs/DeviceName

-V to migrate file system format to

the latest level.

NA X none

-v {yes | no} to verify disk usage. X NA yes

-W NewDeviceName to assign a

new device name to the file

system.

NA X none

-z yes | no to enable DMAPI

See “Enable DMAPI” on page 39.

X X no

Note:

1. X – indicates that the option is available on the command.

2. NA (not applicable) – indicates that the option is not available on the command.

Device name of the file system

File system names must be unique within GPFS clusters. However, two different clusters can have two

distinct file systems with the same name. The device name of the file system does not need to be fully

qualified. fs0 is as acceptable as /dev/fs0. Do not specify an existing entry in /dev.

List of disk descriptors

You can specify a file that contains a list of disk descriptors, one per line. You can use the rewritten

DiskDesc file created by the mmcrnsd command, create your own file, or enter the disk descriptors on the

command line. When using the DiskDesc file created by the mmcrnsd command, the values supplied as

32 GPFS: Concepts, Planning, and Installation Guide

|

|
|

|||

input to the command for Disk Usage and FailureGroup are used. When creating your own file or entering

the descriptors on the command line, you must specify these values or accept the system defaults.

NFS V4 ’deny-write open lock’

You can specify whether a ’deny-write open lock’ blocks writes, which is expected and required by NFS V4

(refer to http://www.nfsv4.org for additional information). See Managing GPFS access control lists and NFS

export in the GPFS: Administration and Programming Reference

nfs4 Must be specified for file systems supporting NFS V4.

posix Specified for file systems supporting NFS V3 or ones which are not NFS exported. This is the

default.

 posix allows NFS writes even in the presence of a deny-write open lock.

Disks for your file system

Prior to issuing the mmcrfs command you must decide if you will:

1. Create new disks through the mmcrnsd command.

2. Select NSDs no longer in use by another GPFS file system. Issue the mmlsnsd -F command to

display the available disks.

See “Disk considerations” on page 24.

Deciding how the file system is mounted

Specify when the file system is to be mounted:

yes When the GPFS daemon starts. This is the default.

no Manual mount.

automount

When the file system is first accessed.

This can be changed at a later time by using the -A option on the mmchfs command.

Considerations:

1. GPFS mount traffic may be lessened by using the automount feature to mount the

file system when it is first accessed instead of at GPFS startup. Automatic mounts

only produce additional control traffic at the point that the file system is first used by

an application or user. Mounts at GPFS startup on the other hand produce additional

control traffic at every GPFS startup. Thus startup of hundreds of nodes at once may

be better served by using automatic mounts.

2. Automatic mounts will fail if the node does not have the operating systems

automount support enabled for the file system.

3. When exporting file systems for NFS mounts, it may be useful to mount the file

system when GPFS starts.

Block size

The size of data blocks in a file system can be specified at file system creation by using the -B option on

the mmcrfs command or allowed to default to 256 KB. This value cannot be changed without re-creating

the file system.

Chapter 2. Planning for GPFS 33

GPFS supports these block sizes for file systems: 16 KB, 64 KB, 256 KB, 512 KB, 1 MB, 2 MB and 4 MB.

This value should be specified with the character K or M as appropriate, for example: 512K or 4M. You

should choose the block size based on the application set that you plan to support and whether you are

using RAID hardware:

v The 16 KB block size optimizes the use of disk storage at the expense of large data transfers.

v The 64 KB block size offers a compromise if there are a mix of many files of approximately 64K or less

in size. It makes more efficient use of disk space than 256 KB, while allowing faster I/O operations than

16 KB.

v The 256 KB block size is the default block size and normally is the best block size for file systems that

contain large files accessed in large reads and writes.

v The 1024 KB or 1 MB block sizes are more efficient if the dominant I/O pattern is sequential access to

large files (1 MB or more).

If you plan to use RAID devices in your file system, a larger block size may be more effective and help

avoid the penalties involved in small block write operations to RAID devices. For example, in a RAID

configuration using 4 data disks and 1 parity disk (a 4+P configuration), which uses a 64 KB stripe size,

the optimal file system block size would be an integral multiple of 256 KB (4 data disks × 64 KB stripe

size = 256 KB). A block size of an integral multiple of 256 KB results in a single data write that

encompasses the 4 data disks and a parity-write to the parity disk. If a block size smaller than 256 KB,

such as 64 KB, is used, write performance is degraded by the read-modify-write behavior. A 64 KB

block size results in a single disk writing 64 KB and a subsequent read from the three remaining disks

in order to compute the parity that is then written to the parity disk. The extra read degrades

performance.

The choice of block size also affects the performance of certain metadata operations, in particular, block

allocation performance. The GPFS block allocation map is stored in blocks, similar to regular files.

When the block size is small:

– It takes more blocks to store a given amount of data resulting in additional work to allocate those

blocks

– One block of allocation map data contains less information

Note: The choice of block size is particularly important for large file systems. For file systems larger

than 100 TB, you should use a block size of at least 256 KB.

Fragments and subblocks

GPFS divides each block into 32 subblocks. Files smaller than one block size are stored in fragments,

which are made up of one or more subblocks. Large files are stored in a number of full blocks plus zero or

more subblocks to hold the data at the end of the file.

The block size is the largest contiguous amount of disk space allocated to a file and therefore the largest

amount of data that can be accessed in a single I/O operation. The subblock is the smallest unit of disk

space that can be allocated. For a block size of 256 KB, GPFS reads as much as 256 KB of data in a

single I/O operation and small files can occupy as little as 8 KB of disk space. With a block size of 16 KB,

small files occupy as little as 512 bytes of disk space (not counting the inode), but GPFS is unable to read

more than 16 KB in a single I/O operation.

atime values

atime represents the time when the file was last accessed. The -S parameter controls the updating of the

atime value. The default is -S no, which results in updating atime locally in memory whenever a file is

read, but the value is not visible to other nodes until after the file is closed. If an accurate atime is needed,

the application must use the GPFS calls gpfs_stat() and gpfs_fstat(). When -S yes is specified, or the file

system is mounted read-only, the updating of the atime value is suppressed. See “Exceptions to Open

Group technical standards” on page 103.

34 GPFS: Concepts, Planning, and Installation Guide

mtime values

mtime represents the time when the file was last modified. The -E parameter controls the frequency of

updating of the mtime value. The default is -E yes, which results in the stat() and fstat() calls reporting

exact mtime values. Specifying -E no results in the stat() and fstat() calls reporting the mtime value

available at the completion of the last sync period. This may result in the calls not always reporting the

exact mtime value. Note that regardless of the -E setting, the GPFS calls gpfs_stat() and gpfs_fstat()

always report the exact mtime. See “Exceptions to Open Group technical standards” on page 103.

Block allocation map

Specifies the block allocation map type. When allocating blocks for a given file, GPFS first uses a

round-robin algorithm to spread the data across all of the disks in the file system. After a disk is selected,

the location of the data block on the disk is determined by the block allocation map type.

The block allocation map can be one of two types:

cluster

GPFS attempts to allocate blocks in clusters. Blocks that belong to a given file are kept next to

each other within each cluster.

 This allocation method provides better disk performance for some disk subsystems in relatively

small installations. The benefits of clustered block allocation diminish when the number of nodes in

the cluster or the number of disks in a file system increases, or when the file system free space

becomes fragmented. The cluster allocation method is the default for GPFS clusters with eight or

fewer nodes or files systems with eight or fewer disks.

scatter

GPFS chooses the location of the blocks randomly.

 This allocation method provides more consistent file system performance by averaging out

performance variations due to block location (for many disk subsystems, the location of the data

relative to the disk edge has a substantial effect on performance). This allocation method is

appropriate in most cases and is the default for GPFS clusters with more than eight nodes or file

systems with more than eight disks.

This parameter for a given file system is specified at file system creation by using the -j option on the

mmcrfs command, or allowing it to default. This value cannot be changed after the file system has been

created.

File system authorization

The type of authorization for the file system is specified on the -k option on the mmcrfs command or

changed at a later time by using the -k option on the mmchfs command:

posix Traditional GPFS access control lists (ACLs) only (NFS V4 ACLs are not allowed).

nfs4 Support for NFS V4 ACLs only. Users are not allowed to assign traditional ACLs to any file system

objects. This should not be specified unless the file system is going to be exported to NFS V4

clients.

all Allows for the coexistence of POSIX and NFS V4 ACLs within a file system. This should not be

specified unless at least one file within the file system is going to be exported to NFS V4 clients.

Strict replication

Strict replication means that data or metadata replication will be performed at all times, according to the

replication parameters specified for the file system. If GPFS cannot perform the file system’s replication,

an error is returned. These are the choices:

no Strict replication is not enforced. GPFS tries to create the needed number of replicas, but returns

an errno of EOK if it can allocate at least one replica.

Chapter 2. Planning for GPFS 35

whenpossible

Strict replication is enforced if the disk configuration allows it. If the number of failure groups is

insufficient, strict replication is not enforced. This is the default value.

always

Strict replication is always enforced.

The use of strict replication is specified at file system creation by using the -K option on the mmcrfs

command. The default is whenpossible. This value can be changed using the mmchfs command.

Internal log file

You can specify the internal log file size. Refer to “GPFS recovery logs” on page 83 for additional

information.

File system recoverability parameters

The metadata (inodes, directories, and indirect blocks) and data replication parameters are set at the file

system level and apply to all files. They are initially set for the file system when issuing the mmcrfs

command. They can be changed for an existing file system using the mmchfs command, but

modifications only apply to files subsequently created. To apply the new replication values to existing files

in a file system, issue the mmrestripefs command.

Metadata and data replication are specified independently. Each has a default replication factor of 1 (no

replication) and a maximum replication factor. Although replication of metadata is less costly in terms of

disk space than replication of file data, excessive replication of metadata also affects GPFS efficiency

because all metadata replicas must be written. In general, more replication uses more space.

Default metadata Replicas

The default number of copies of metadata for all files in the file system may be specified at file system

creation by using the -m option on the mmcrfs command or changed at a later time by using the -m

option on the mmchfs command. This value must be equal to or less than MaxMetadataReplicas, and

cannot exceed the number of failure groups with disks that can store metadata. The allowable values are

1 or 2, with a default of 1.

Maximum metadata replicas

The maximum number of copies of metadata for all files in the file system can be specified at file system

creation by using the -M option on the mmcrfs command. The default is 2. The allowable values are 1 or

2, but it cannot be lower than the value of DefaultMetadataReplicas. This value cannot be changed.

Default data replicas

The default replication factor for data blocks may be specified at file system creation by using the -r option

on the mmcrfs command or changed at a later time by using the -r option on the mmchfs command. This

value must be equal to or less than MaxDataReplicas, and the value cannot exceed the number of failure

groups with disks that can store data. The allowable values are 1 and 2, with a default of 1.

If you want to change the data replication factor for the entire file system, the data disk in each storage

pool must have a failure group that is equal to or greater than the replication factor. For example, you will

get a failure with error messages if you try to change the replication factor for a file system to 2 but the

storage pool has only one failure group.

Maximum data replicas

The maximum number of copies of data blocks for a file can be specified at file system creation by using

the -R option on the mmcrfs command. The default is 2. The allowable values are 1 and 2, but cannot be

lower than the value of DefaultDataReplicas. This value cannot be changed.

36 GPFS: Concepts, Planning, and Installation Guide

Number of nodes mounting the file system

The estimated number of nodes that will mount the file system may be specified at file system creation by

using the -n option on the mmcrfs command or allowed to default to 32.

When creating a GPFS file system, over estimate the number of nodes that will mount the file system.

This input is used in the creation of GPFS data structures that are essential for achieving the maximum

degree of parallelism in file system operations (see Chapter 10, “GPFS architecture,” on page 79).

Although a larger estimate consumes a bit more memory, insufficient allocation of these data structures

can limit node ability to process certain parallel requests efficiently, such as the allotment of disk space to

a file. If you cannot predict the number of nodes, allow the default value to be applied. Specify a larger

number if you expect to add nodes, but avoid wildly overestimating as this can affect buffer operations.

Note: This value cannot be changed later.

Maximum number of files

The maximum number of files in a file system may be specified at file system creation by using the -N

option on the mmcrfs command or changed at a later time by using the -F option on the mmchfs

command. This value defaults to the size of the file system at creation divided by 1 MB and cannot exceed

the architectural limit of 2,147,483,647.

These options limit the maximum number of files that may actively exist within the file system. However,

the maximum number of files in the file system may be restricted by GPFS so the control structures

associated with each file do not consume all of the file system space.

Note:

1. For file systems that will be doing parallel file creates, if the total number of free inodes is not

greater than 5% of the total number of inodes there is the potential for slowdown in file system

access. Take this into consideration when creating or changing your file system. Use the mmdf

command to display the number of free inodes.

2. Excessively increasing the value for the maximum number of files will cause the allocation of

too much disk space for control structures.

Windows drive letter

In a Windows environment, you must associate a drive letter with the file system to be mounted. The drive

letter can be changed with the -t option of the mmcrfs and mmchfs commands.

The number of available drive letters restricts the number of file systems that can be mounted on

Windows.

Note: Certain applications give special meaning to drive letters A:, B:, and C:, which could cause

problems if they are assigned to a GPFS file system.

Mountpoint directory

Every GPFS file system has a default mount point associated with it. This mount point can be specified

and changed with the -T option of the mmcrfs and mmchfs commands. If you do not specify a mount

point when you create the file system, GPFS will set the default mount point to /gpfs/DeviceName.

Assign mount command options

Options may be passed to the file system mount command using the -o option on the mmchfs command.

Chapter 2. Planning for GPFS 37

|

|
|

|
|

|
|

|

Automatic quota activation

Whether or not to automatically activate quotas when the file system is mounted may be specified at file

system creation by using the -Q option on the mmcrfs command or changed at a later time by using the

-Q option on the mmchfs command. After the file system has been mounted, quota values are established

by issuing the mmedquota command and activated by issuing the mmquotaon command. The default is

to not have quotas activated.

The GPFS quota system helps you control the allocation of files and data blocks in a file system. GPFS

quotas can be defined for individual users, groups of users, or filesets. Quotas should be installed by the

system administrator if control over the amount of space used by the individual users, groups of users, or

filesets is desired. When setting quota limits for a file system, the system administrator should consider the

replication factors of the file system. GPFS quota management takes replication into account when

reporting on and determining if quota limits have been exceeded for both block and file usage. In a file

system that has either type of replication (data replication or metadata replication) set to a value of two,

the values reported on by both the mmlsquota and the mmrepquota commands are double the value

reported by the ls command.

GPFS quotas operate with three parameters that you can explicitly set using the mmedquota and

mmdefedquota commands:

1. Soft limit

2. Hard limit

3. Grace period

The soft limits define levels of disk space and files below which the user, group of users, or fileset can

safely operate. The hard limits define the maximum disk space and files the user, group of users, or fileset

can accumulate. Specify hard and soft limits for disk space in units of kilobytes (k or K), megabytes (m or

M), or gigabytes (g or G). If no suffix is provided, the number is assumed to be in bytes.

The grace period allows the user, group of users, or fileset to exceed the soft limit for a specified period of

time (the default period is one week). If usage is not reduced to a level below the soft limit during that

time, the quota system interprets the soft limit as the hard limit and no further allocation is allowed. The

user, group of users, or fileset can reset this condition by reducing usage enough to fall below the soft

limit.

Default quotas

Applying default quotas provides all new users of the file system, groups of users of the file system, or a

fileset with established minimum quota limits. If default quota values are not enabled, a new user, a new

group, or a new fileset has a quota value of zero, which establishes no limit to the amount of space that

can be used.

Default quotas may be set for a file system only if the file system was created with the -Q yes option on

the mmcrfs command, or updated with the -Q option on the mmchfs command. Default quotas may then

be enabled for the file system by issuing the mmdefquotaon command. Default values are established by

issuing the mmdefedquota command.

Quota system files

The GPFS quota system maintains three separate files that contain data about usage and limits. These

files reside in the root directory of the GPFS file systems:

v user.quota

v group.quota

v fileset.quota

All three .quota files are:

v Built with the information provided in the mmedquota and mmdefedquota commands.

38 GPFS: Concepts, Planning, and Installation Guide

v Updated through normal allocation operations throughout the file system and when the mmcheckquota

command is issued.

v Readable by the mmlsquota and mmrepquota commands.

The .quota files are read from the root directory when mounting a file system with quotas enabled. When

these files are read, one of three possible actions take place:

v The files contain quota information and the user wants these files to be used.

v The files contain quota information, however, the user wants different files to be used.

To specify the use of different files, the mmcheckquota command must be issued prior to the mount of

the file system.

v The files do not contain quota information. In this case the mount fails and appropriate error messages

are issued. See the GPFS: Problem Determination Guide for further information regarding mount

failures.

Enable DMAPI

Whether or not the file system can be monitored and managed by the GPFS Data Management API

(DMAPI) may be specified at file system creation by using the -z option on the mmcrfs command or

changed at a later time by using the -z option on the mmchfs command. The default is not to enable

DMAPI for the file system.

Note: A file system cannot be mounted by Windows if DMAPI is enabled.

For further information about DMAPI for GPFS, see the GPFS: Data Management API Guide.

A sample file system creation

To create a file system called gpfs2 with the properties:

v The disks for the file system listed in the file /tmp/gpfs2dsk

v Automatically mount the file system when the GPFS daemon starts (-A yes)

v A block size of 256 KB (-B 256K)

v Mount it on 32 nodes (-n 32)

v Both default replication and the maximum replication for metadata set to two (-m 2 -M 2)

v Default replication for data set to one and the maximum replication for data set to two (-r 1 -R 2)

v Default mount point (-T /gpfs2)

Enter:

mmcrfs /dev/gpfs2 -F /tmp/gpfs2dsk -A yes -B 256K -n 32 -m 2 -M 2 -r 1 -R 2 -T /gpfs2

The system displays information similar to:

The following disks of gpfs2 will be formatted on node k194p03.tes.nnn.com:

 hd25n09: size 17796014 KB

 hd24n09: size 17796014 KB

 hd23n09: size 17796014 KB

Formatting file system ...

Disks up to size 59 GB can be added to storage pool system.

Creating Inode File

 56 % complete on Mon Mar 6 15:10:08 2006

 100 % complete on Mon Mar 6 15:10:11 2006

Creating Allocation Maps

Clearing Inode Allocation Map

Clearing Block Allocation Map

 44 % complete on Mon Mar 6 15:11:32 2006

 90 % complete on Mon Mar 6 15:11:37 2006

Chapter 2. Planning for GPFS 39

|

100 % complete on Mon Mar 6 15:11:38 2006

Completed creation of file system /dev/gpfs2.

mmcrfs: Propagating the cluster configuration data to all

 affected nodes. This is an asynchronous process.

To confirm the file system configuration, issue the command:

mmlsfs gpfs2

The system displays information similar to:

flag value description

---- -------------- ---

 -f 8192 Minimum fragment size in bytes

 -i 512 Inode size in bytes

 -I 32768 Indirect block size in bytes

 -m 2 Default number of metadata replicas

 -M 2 Maximum number of metadata replicas

 -r 1 Default number of data replicas

 -R 2 Maximum number of data replicas

 -j scatter Block allocation type

 -D posix File locking semantics in effect

 -k posix ACL semantics in effect

 -K whenpossible Strict replication enforcement

 -a 1048576 Estimated average file size

 -n 32 Estimated number of nodes that will mount file system

 -B 262144 Block size

 -Q user;group;fileset Quotas enforced

 user;group Default quotas enabled

 -F 2998272 Maximum number of inodes

 -V 10.00 (3.2.0.0) File system version.

 -u yes Support for large LUNs?

 -z no Is DMAPI enabled?

 -E yes Exact mtime mount option

 -S yes Suppress atime mount option

 -P system Disk storage pools in file system

 -d hd25n09;hd24n09;hd23n09 Disks in file system

 -A yes Automatic mount option

 -o none Additional mount options

 -T /gpfs2 Default mount point

40 GPFS: Concepts, Planning, and Installation Guide

Chapter 3. Steps to establishing and starting your GPFS

cluster

There are several steps you must perform to establish and start your GPFS cluster. This topic provides the

information you need for performing those steps.

Follow these steps to establish your GPFS cluster:

1. See the GPFS FAQ at publib.boulder.ibm.com/infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/
gpfs_faqs/gpfsclustersfaq.html for the latest recommendations on establishing a GPFS cluster.

2. Place the GPFS code on your system:

v For existing systems, see Chapter 7, “Migration, coexistence and compatibility,” on page 59.

v For new systems:

– For your Linux nodes, see Chapter 4, “Installing GPFS on Linux nodes,” on page 43.

– For your AIX nodes, see Chapter 5, “Installing GPFS on AIX nodes,” on page 47.

– For your Windows nodes, see Chapter 6, “Installing GPFS on Windows nodes,” on page 51.

3. Decide which nodes in your system will be quorum nodes (see “Quorum” on page 15) .

4. Create your GPFS cluster by issuing the mmcrcluster command. See “GPFS cluster creation

considerations” on page 20.

After your GPFS cluster has been established:

1. Ensure you have configured and tuned your system according to the values suggested in Chapter 8,

“Configuring and tuning your system for GPFS,” on page 67.

2. Start GPFS by issuing the mmstartup command. See the GPFS: Administration and Programming

Reference.

3. Create new disks for use in your file systems by issuing the mmcrnsd command. See “NSD creation

considerations” on page 25.

4. Create new file systems by issuing the mmcrfs command. See “File system creation considerations”

on page 30.

5. If you need to import file systems that currently belong to some other cluster, see the topic on

Exporting file system definitions between clusters in the GPFS: Advanced Administration Guide.

6. Mount your file systems.

7. As an optional step, you can also create a temporary directory (/tmp/mmfs) to collect problem

determination data. If you decide to do so, the temporary directory should not be placed in a GPFS file

system, as it might not be available if GPFS fails. The /tmp/mmfs directory can be a symbolic link to

another location if more space can be found there.

If a problem should occur, GPFS may write 200 MB or more of problem determination data into

/tmp/mmfs. These files must be manually removed when any problem determination is complete. This

should be done promptly so that a NOSPACE condition is not encountered during the next failure. An

alternate path may be specified through the mmchconfig command.

© Copyright IBM Corp. 1998, 2008 41

|

42 GPFS: Concepts, Planning, and Installation Guide

Chapter 4. Installing GPFS on Linux nodes

There are four steps to installing GPFS on Linux nodes. The information in this topic will point you to the

detailed steps.

Before you begin installation, read Chapter 2, “Planning for GPFS,” on page 13 and the GPFS FAQ at

publib.boulder.ibm.com/infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html.

Do not attempt to install GPFS if you do not have the prerequisites listed in “Hardware requirements” on

page 13 and “Software requirements” on page 13.

Ensure that the PATH environment variable on each node includes /usr/lpp/mmfs/bin.

The installation process includes:

1. “Creating a file to ease the Linux installation process”

2. “Verifying the level of prerequisite software”

3. “Procedure for installing GPFS on Linux nodes” on page 44

4. “Building your GPFS portability layer” on page 45

Creating a file to ease the Linux installation process

To ease the installation process, it is suggested that you create a file listing all of the nodes in your GPFS

cluster using either host names or IP addresses.

For example, create the file /tmp/gpfs.allnodes, listing the nodes one per line:

k145n01.dpd.ibm.com

k145n02.dpd.ibm.com

k145n03.dpd.ibm.com

k145n04.dpd.ibm.com

k145n05.dpd.ibm.com

k145n06.dpd.ibm.com

k145n07.dpd.ibm.com

k145n08.dpd.ibm.com

Verifying the level of prerequisite software

Before you install GPFS, it is necessary to verify that you have the correct levels of the prerequisite

software installed on each node in the cluster. If the correct level of prerequisite software is not installed,

see the appropriate installation manual before proceeding with your GPFS installation.

See the GPFS FAQ at http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/
com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html for the latest:

v Linux distributions

v RPM levels

v Software recommendations

v Configuration information

© Copyright IBM Corp. 1998, 2008 43

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html

Procedure for installing GPFS on Linux nodes

Follow the steps in this topic in the specified order to install the GPFS software using the rpm command.

This procedure installs GPFS on one node at a time:

1. “Accepting the electronic license agreement”

2. “Creating the GPFS directory”

3. “Installing the GPFS man pages” on page 45

4. “Installing GPFS over a network” on page 45

5. “Verifying the GPFS installation” on page 45

Accepting the electronic license agreement

The GPFS software license agreement is shipped and viewable electronically. The electronic license

agreement must be accepted before software installation can continue. See “Creating the GPFS directory.”

Creating the GPFS directory

To create the GPFS directory:

1. On any node create a temporary subdirectory where GPFS installation images will be extracted. For

example:

mkdir /tmp/gpfslpp

2. Copy the self-extracting product image, gpfs_install-3.2*, from the CD-ROM to the new directory

(where * is the correct version of the product for your hardware platform and Linux distribution).

The image contains:

v The GPFS product installation images

v The License Acceptance Process (LAP) Tool

The LAP Tool is invoked for acceptance of the GPFS license agreements. The license agreements

must be accepted to obtain access to the GPFS product installation images.

v A version of the Java™ Runtime Environment (JRE) necessary to run the LAP Tool

3. Verify that the self-extracting program has executable permissions.

4. Invoke the self extracting image that you copied from the CD-ROM and accept the license agreement:

a. By default, the LAP Tool, JRE and GPFS installation images will be extracted to the target directory

/usr/lpp/mmfs/3.2* .

b. The license agreement files on the media can be viewed in graphics mode or text-only mode.

To view the files in graphics mode, invoke gpfs_install-3.2*. To view the files in text-only mode,

use the --text-only option.

c. Use the --silent option to accept the license agreements.

d. Use the --help option to obtain usage information from the self-extracting archive.
gpfs_install-3.2.* --silent

Upon license agreement acceptance, the GPFS product installation images will reside in the extraction

target directory. Copy these images to the /tmp/gpfslpp directory:

1. gpfs.base-3.2*.rpm

2. gpfs.gpl-3.2*.noarch.rpm

3. gpfs.msg.en_US-3.2*.noarch.rpm

4. gpfs.docs-3.2*.noarch.rpm

44 GPFS: Concepts, Planning, and Installation Guide

The License agreements will remain available in the extraction target directory under the license

subdirectory for future access. The license files are written using operating system-specific code pages.

Accordingly, you may view the license in English and the local language configured on your machine. The

other languages are not guaranteed to be viewable.

Installing the GPFS man pages

In order to use the GPFS man pages the gpfs.docs RPM must be installed. Once you have installed the

gpfs.docs RPM, the GPFS manual pages will be located at /usr/share/man/.

Note: The gpfs.docs RPM need not be installed on all nodes if man pages are not desired or local file

space on the node is minimal.

Installing GPFS over a network

Install GPFS according to these directions, where localNode is the name of the node on which you are

running:

1. If you are installing on a shared file system network, ensure the directory where the GPFS images can

be found is NFS exported to all of the nodes planned for your GPFS cluster (/tmp/gpfs.allnodes).

2. Ensure an acceptable directory or mountpoint is available on each target node, such as /tmp/gpfslpp.

If there is not, create one:

cat /tmp/gpfs.allnodes | xargs -i rsh {} mkdir /tmp/gpfslpp

3. If you are installing on a shared file system network, to place the GPFS images on each node in your

network, issue:

cat /tmp/gpfs.allnodes | xargs -i rsh {} mount localNode:/tmp/gpfslpp /tmp/gpfslpp

Otherwise, issue:

cat /tmp/gpfs.allnodes | xargs -i rcp /tmp/gpfslpp/gpfs*.rpm {}:/tmp/gpfslpp

4. Install GPFS on each node:

cat /tmp/gpfs.allnodes | xargs -i rsh {} rpm -Uvh /tmp/gpfslpp/gpfs*.rpm

Verifying the GPFS installation

Verify the installation of GPFS file sets on each system node to check that the software has been

successfully installed:

 rpm -qa | grep gpfs

The system should return output similar to:

gpfs.docs-3.2.1-0

gpfs.base-3.2.1-0

gpfs.msg.en_US-3.2.1-0

gpfs.gpl-3.2.1-0

Building your GPFS portability layer

Before starting GPFS, you must build the GPFS portability layer, which is a set of binaries that need to be

built locally from source code to match your Linux kernel and configuration.

1. Before building the portability layer check for:

v Updates to the portability layer at http://www14.software.ibm.com/webapp/set2/sas/f/gpfs/home.html

v The latest kernel level support in the GPFS FAQ at http://publib.boulder.ibm.com/infocenter/clresctr/
vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html

Chapter 4. Installing GPFS on Linux nodes 45

|
|
|
|

|

http://www14.software.ibm.com/webapp/set2/sas/f/gpfs/home.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html

v Any applicable GPFS Linux Kernel Patches available at http://www.ibm.com/developerworks/
opensource/ under the project General Parallel File System (GPFS) for Linux Kernel Patches.

2. Build your GPFS portability layer in one of two ways:

v Using the directions in /usr/lpp/mmfs/src/README

v Using the Autoconfig tool.

Using the automatic configuration tool to build GPFS portability layer

To help you build the portability layer, GPFS provides an automatic configuration tool. This tool, named

configure is a Perl script residing in /usr/lpp/mmfs/src/config/configure on installed GPFS systems.

When you run the configure tool, it automatically examines the system and generates a working

configuration file. GPFS will then use the configuration file as it creates the portability layer.

Note: You must manually invoke the configure tool.

While it is running, the configure tool gathers system-specific parameters and combines them with a

template file to produce a configuration file for the build. The makefile invocation for the configure tool is

make Autoconfig which must be issued from the top level $SHARKCLONEROOT directory. The

configuration file is then invoked by issuing make World in the usual manner. The invoker has the option

to specify input parameters as well as pairs of attributes and values to change the configuration attributes.

Use configure -help to see a list of options and attributes.

Note:

1. The environment variable SHARKCLONEROOT is the root of the GPFS source

2. If SHARKCLONEROOT is not set, configure uses /usr/lpp/mmfs/src

This example shows the commands to create the configuration file and then invoke it to make the

portability layer:

cd /usr/lpp/mmfs/src

export SHARKCLONEROOT=/usr/lpp/mmfs/src

make Autoconfig

#Can check /usr/lpp/mmfs/src/config/site.mcr

make World

make InstallImages

echo $?

46 GPFS: Concepts, Planning, and Installation Guide

http://www.ibm.com/developerworks/opensource/
http://www.ibm.com/developerworks/opensource/

Chapter 5. Installing GPFS on AIX nodes

There are three steps to installing GPFS on AIX 5L™ nodes. The information in this topic will point you to

the detailed steps.

Before you begin installation, read Chapter 2, “Planning for GPFS,” on page 13 and the GPFS FAQs at

publib.boulder.ibm.com/infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html.

Do not attempt to install GPFS if you do not have the prerequisites listed in “Hardware requirements” on

page 13 and “Software requirements” on page 13.

Ensure that the PATH environment variable on each node includes /usr/lpp/mmfs/bin.

The installation process includes:

1. “Creating a file to ease the AIX installation process”

2. “Verifying the level of prerequisite software”

3. “Procedure for installing GPFS on AIX nodes” on page 48

Creating a file to ease the AIX installation process

Creation of a file that contains all of the nodes in your GPFS cluster prior to the installation of GPFS, will

be useful during the installation process. Using either host names or IP addresses when constructing the

file will allow you to use this information when creating your cluster through the mmcrcluster command.

For example, create the file /tmp/gpfs.allnodes, listing the nodes one per line:

k145n01.dpd.ibm.com

k145n02.dpd.ibm.com

k145n03.dpd.ibm.com

k145n04.dpd.ibm.com

k145n05.dpd.ibm.com

k145n06.dpd.ibm.com

k145n07.dpd.ibm.com

k145n08.dpd.ibm.com

Verifying the level of prerequisite software

Before you can install GPFS, you must verify that your system has the correct software levels installed.

If your system does not have the prerequisite AIX level, refer to the appropriate installation manual before

proceeding with your GPFS installation. See the GPFS FAQ at: http://publib.boulder.ibm.com/infocenter/
clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html for the latest software

levels.

To verify the software version, run the command:

WCOLL=/tmp/gpfs.allnodes dsh "oslevel"

The system should display output similar to:

5.3.0.10

© Copyright IBM Corp. 1998, 2008 47

|
|
|

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html

Procedure for installing GPFS on AIX nodes

These installation procedures are generalized for all levels of GPFS. Ensure you substitute the correct

numeric value for the modification (m) and fix (f) levels, where applicable. The modification and fix level

are dependent upon the current level of program support.

Follow these steps to install the GPFS software using the installp command:

1. “Accepting the electronic license agreement”

2. “Creating the GPFS directory”

3. “Creating the GPFS installation table of contents file”

4. “Installing the GPFS man pages”

5. “Installing GPFS over a network” on page 49

6. “Reconciling existing GPFS files” on page 49

7. “Verifying the GPFS installation” on page 49

Accepting the electronic license agreement

The GPFS software license agreements is shipped and viewable electronically. The electronic license

agreement must be accepted before software installation can continue.

For additional software package installations, the installation cannot occur unless the appropriate license

agreements are accepted. When using the installp command, use the -Y flag to accept licenses and the

-E flag to view license agreement files on the media.

Creating the GPFS directory

To create the GPFS directory:

1. On any node create a temporary subdirectory where GPFS installation images will be extracted. For

example:

mkdir /tmp/gpfslpp

2. Copy the installation images from the CD-ROM to the new directory, by issuing:

bffcreate -qvX -t /tmp/gpfslpp -d /dev/cd0 all

This command places these GPFS installation files in the images directory:

a. gpfs.base

b. gpfs.docs.data

c. gpfs.msg.en_US

Creating the GPFS installation table of contents file

To create the GPFS installation table of contents file:

1. Make the new image directory the current directory:

cd /tmp/gpfslpp

2. Use the inutoc command to create a .toc file. The .toc file is used by the installp command.

inutoc

Installing the GPFS man pages

In order to use the GPFS man pages you must install the gpfs.docs.data image. The GPFS manual

pages will be located at /usr/share/man/.

48 GPFS: Concepts, Planning, and Installation Guide

Installation consideration: The gpfs.docs.data image need not be installed on all nodes if man pages

are not desired or local file system space on the node is minimal.

Installing GPFS over a network

Install GPFS according to these directions, where localNode is the name of the node on which you are

running:

1. If you are installing on a shared file system network, ensure the directory where the GPFS images can

be found is NFS exported to all of the nodes planned for your GPFS cluster (/tmp/gpfs.allnodes).

2. Ensure an acceptable directory or mountpoint is available on each target node, such as /tmp/gpfslpp.

If there is not, create one:

WCOLL=/tmp/gpfs.allnodes dsh "mkdir /tmp/gpfslpp"

3. If you are installing on a shared file system network, to place the GPFS images on each node in your

network, issue:

 WCOLL=/tmp/gpfs.allnodes dsh "mount localNode:/tmp/gpfslpp /tmp/gpfslpp"

Otherwise, issue:

WCOLL=/tmp/gpfs.allnodes dsh "rcp localNode:/tmp/gpfslpp/gpfs* /tmp/gpfslpp"

WCOLL=/tmp/gpfs.allnodes dsh "rcp localNode:/tmp/gpfslpp/.toc /tmp/gpfslpp"

4. Install GPFS on each node:

WCOLL=/tmp/gpfs.allnodes dsh "installp -agXYd /tmp/gpfslpp gpfs"

Reconciling existing GPFS files

If you have previously installed GPFS on your system, during the install process you may see messages

similar to:

Some configuration files could not be automatically merged into the

system during the installation. The previous versions of these files

have been saved in a configuration directory as listed below. Compare

the saved files and the newly installed files to determine if you need

to recover configuration data. Consult product documentation to

determine how to merge the data.

Configuration files which were saved in /lpp/save.config:

 /var/mmfs/etc/gpfsready

 /var/mmfs/etc/gpfsrecover.src

 /var/mmfs/etc/mmfsdown.scr

 /var/mmfs/etc/mmfsup.scr

If you have made changes to any of these files, you will have to reconcile the differences with the new

versions of the files in directory /var/mmfs/etc.

Verifying the GPFS installation

Verify that the installation procedure placed the required GPFS files on each node by running the lslpp

command on each node:

lslpp -l gpfs*

The system should return output similar to:

 Fileset Level State Description

 --

Path: /usr/lib/objrepos

 gpfs.base 3.2.1.5 COMMITTED GPFS File Manager

 gpfs.msg.en_US 3.2.1.5 COMMITTED GPFS Server Messages - U.S.

 English

Chapter 5. Installing GPFS on AIX nodes 49

|
|
|
|
|
|
|

Path: /etc/objrepos

 gpfs.base 3.2.1.5 COMMITTED GPFS File Manager

Path: /usr/share/lib/objrepos

 gpfs.docs.data 3.2.1.5 COMMITTED GPFS Server Manpages and

 Documentation

Note: The path returned by lslpp -l shows the location of the package control data used by installp.

The listed path does not show GPFS file locations. To view GPFS file locations, use the -f flag.

50 GPFS: Concepts, Planning, and Installation Guide

|
|
|
|
|
|

Chapter 6. Installing GPFS on Windows nodes

There are several steps to installing GPFS on Windows nodes. The information in this topic will point you

to the detailed steps.

Do not install GPFS if you do not have the prerequisites listed in “Hardware requirements” on page 13 and

“Software requirements” on page 13.

Before you begin installation, read the following:

v Chapter 2, “Planning for GPFS,” on page 13

v The GPFS FAQ at: http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/
com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html

v “GPFS for Windows overview” and all of its subtopics

The installation process includes:

1. “Installing GPFS prerequisites” on page 55

2. “Procedure for installing GPFS on Windows nodes” on page 58

3. “Configuring Windows” on page 56

To install GPFS on Windows, first configure your Windows systems as described in “Installing GPFS

prerequisites” on page 55. This includes installing SUA, creating a GPFS administrative account, and

installing SSH. GPFS installation will be simple once the prerequisites are completed.

Note: Throughout the GPFS documentation, there are directory and file names given as UNIX-style paths

such as /tmp/mmfs and /var/mmfs/gen/mmsdrfs. These files exist on Windows under the

%SystemRoot%\SUA directory. This means that a file referenced as /var/mmfs/gen/mmsdrfs in

the GPFS documentation will have a name like C:\Windows\SUA\var\mmfs\gen\mmsdrfs on

Windows nodes.

GPFS for Windows overview

GPFS for Windows Multiplatform V3.2.1 supports the Windows Server 2003 R2 operating system running

on 64-bit architectures (AMD x64 / EM64T) in an AIX or Linux GPFS cluster.

GPFS for Windows participates in a new or existing GPFS V3.2 cluster in conjunction with AIX and Linux

(32- or 64-bit) systems. Support includes:

v Client access to GPFS V3.2 file systems

v User identity mapping between Windows and UNIX

v Windows file system semantics

v Core GPFS parallel data services

v A broad complement of advanced GPFS features

Identity mapping between Windows and UNIX user accounts is one of the key features of GPFS for

Windows Multiplatform. System administrators can explicitly match users and groups defined on UNIX with

those defined on Windows. Users can maintain file ownership and access rights from either platform.

System administrators are not required to define an identity map. GPFS automatically creates a mapping

when one is not defined.

GPFS supports the unique semantic requirements posed by Windows. These requirements include

case-insensitive names, NTFS-like file attributes, and Windows file locking. GPFS provides a bridge

between a Windows and POSIX view of files, while not adversely affecting the functions provided on AIX

and Linux.

© Copyright IBM Corp. 1998, 2008 51

|

|

|
|

|
|

|

|

|
|

|

|

|

|

|

|
|
|

|
|
|
|
|

|
|

|
|

|
|

|

|

|

|

|

|
|
|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html

GPFS for Windows Multiplatform provides the same core services to parallel and serial applications as are

available on AIX and Linux. GPFS gives parallel applications simultaneous access to the same files, or

different files, from any node that has GPFS mounted, while managing a high level of control over all file

system operations. System administrators and users have a consistent command interface on AIX, Linux,

and Windows. With few exceptions, the commands supported on Windows are identical to those on other

GPFS platforms. See “GPFS limitations on Windows” for a list of commands that Windows clients do not

support.

GPFS limitations on Windows

GPFS for Windows does not fully support all the GPFS features available on AIX and Linux. Some of

these limitations constrain how you can configure a GPFS cluster when it includes Windows nodes. The

remaining limitations only pertain to Windows nodes rather than the whole cluster.

GPFS for Windows imposes some constraints on how you can configure and operate a cluster when it

includes Windows nodes. The following is a list of these limitations:

v Windows nodes do not support direct access to disks. Windows nodes in a GPFS cluster can only

access storage as a network shared disk (NSD) client. This means that any cluster that includes

Windows requires at least one AIX or Linux node operating as a NSD server.

v File systems must be created with GPFS 3.2.1.5 or higher. Windows nodes can only mount file systems

that were formatted with GPFS versions starting with 3.2.1.5. There is no support for upgrading existing

file systems created with a GPFS version older than V3.2.

v File systems cannot be shared with other GPFS clusters. Clusters that contain Windows nodes cannot

share its file systems with other GPFS clusters. Similarly, these clusters cannot remote-mount file

systems from other clusters. (See Accessing GPFS file systems from other GPFS clusters in the GPFS:

Advanced Administration Guide.)

v The cluster cannot use OpenSSL. Clusters that contain Windows nodes cannot use OpenSSL for

connection authentication or data encryption in GPFS.

v File systems cannot be DMAPI-enabled. DMAPI-enabled file systems will not mount on a Windows

node.

The remaining GPFS for Windows limitations only pertain to the Windows nodes in a cluster:

v Windows nodes cannot be assigned file system manager or quorum roles.

v The Tivoli® Storage Manager (TSM) Backup Archive client for Windows does not support GPFS file

systems. TSM backup and archiving operations are supported on AIX and Linux nodes in a cluster that

contains Windows. For information on TSM backup archive client support for GPFS, see:

– The GPFS FAQ at http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/
com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html

– IBM Tivoli Storage Manager Support at http://www.ibm.com/software/sysmgmt/products/support/
IBMTivoliStorageManager.html

v The following GPFS commands are not supported on Windows:

– mmapplypolicy

– mmbackup

– mmcheckquota

– mmdefedquota

– mmdelacl

– mmeditacl

– mmedquota

– mmgetacl

– mmlsquota

– mmpmon

52 GPFS: Concepts, Planning, and Installation Guide

|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|

|

|
|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html
http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliStorageManager.html
http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliStorageManager.html

– mmputacl

– mmrepquota

– mmrestripefile

v The GPFS application programming interfaces (APIs) are not supported on Windows.

v The native Windows backup utility is not supported.

v Symbolic links that are created on UNIX-based nodes are specially handled by GPFS Windows nodes;

they appear as regular files with a size of 0 and their contents cannot be accessed or modified.

v GPFS on Windows nodes attempts to preserve data integrity between memory mapped I/O and other

forms of I/O on the same compute node. However, if the same file is memory mapped on more than

one Windows node, data coherency is not guaranteed between the memory-mapped sections on these

multiple nodes. In other words, GPFS on Windows does not provide distributed shared memory

semantics. Therefore, applications that require data coherency between memory-mapped files on more

than one node might not function as expected.

File name considerations

File names created on UNIX-based GPFS nodes using characters that are not valid for the Windows file

systems (such as colons, slashes, back slashes, asterisks, question marks, double quotation marks, less

than, greater than, and pipe characters) are transformed into valid short names. Windows applications can

use the short name to gain access to files. GPFS generates unique short names using an internal

algorithm. You can view these short names by issuing dir /x in a command prompt.

Table 5 shows an example:

 Table 5. Generating short names for Windows

UNIX Windows

foo+bar.foobar FO~23Q_Z.foo

foo|bar.-bar FO~TD}C5._ba

f|bar.-bary F_~AMJ5!._ba

Case sensitivity

Native GPFS is case-sensitive; however, Windows applications can choose to use case-sensitive or

case-insensitive names. This means that case-sensitive applications, such as those using Windows

support for POSIX interfaces, behave as expected. Native Win32 applications (such as Windows Explorer)

have only case-aware semantics.

The case specified when a file is created is preserved, but in general, file names are case insensitive. For

example, Windows Explorer allows you to create a file named Hello.c, but an attempt to create hello.c in

the same folder will fail because the file already exists. If a Windows node accesses a folder that contains

two files that are created on a UNIX node with names that differ only in case, Windows inability to

distinguish between the two files might lead to unpredictable results.

Antivirus software

If more than one GPFS Windows node is running antivirus software that scans directories and files, shared

files only need to be scanned by one GPFS node. It is not necessary to scan shared files more than once.

When you run antivirus scans from more than one node, schedule the scans to run at different times to

allow better performance of each scan, as well as to avoid any conflicts that might arise because of

concurrent exclusive access attempts by the antivirus software from multiple nodes. Note that enabling

real-time antivirus protection for GPFS volumes could significantly degrade GPFS performance and cause

excessive resource consumption.

Chapter 6. Installing GPFS on Windows nodes 53

|

|

|

|

|

|
|

|
|
|
|
|
|

|

|
|
|
|
|

|

||

||

||

||

||
|

|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

Tip: Consider using a single, designated Windows node to perform all virus scans.

Differences between GPFS and NTFS

GPFS differs from the Microsoft® Windows NT® File System (NTFS) in its degree of integration into the

Windows administrative environment, Windows Explorer, and the desktop. The differences are as follows:

v Manual refreshes are required to see any updates to the GPFS namespace.

v You cannot use the recycle bin.

v You cannot use distributed link tracking. This is a technique through which shell shortcuts and OLE links

continue to work after the target file is renamed or moved. Distributed link tracking can help you locate

the link sources in case the link source is renamed or moved to another folder on the same or different

volume on the same computer, or moved to a folder on any computer in the same domain.

v You cannot use NTFS change journaling. This means that GPFS does not provide efficient support for

the indexing services accessible through the Windows Search for files or folders function.

GPFS does not support the following NTFS features:

v File compression (on individual files or on all files within a folder)

v Encrypted files and directories

v Quota management (GPFS quotas are administered through GPFS-specific commands)

v Reparse points

v Defragmentation and error-checking tools

v Alternate data streams

v The assignment of an access control list (ACL) for the entire drive

v A change journal for file activity

v The scanning of all files or directories that a particular SID owns (FSCTL_FIND_FILES_BY_SID)

v Generation of AUDIT and ALARM events specified in a System Access Control List (SACL). GPFS is

capable of storing SACL content, but will not interpret it.

v Windows sparse files API

v Transactional NTFS (also known as TxF)

Access control on GPFS file systems

GPFS provides support for the Windows access control model for file system objects.

Each GPFS file or directory has a Security Descriptor (SD) object associated with it and you can use the

standard Windows interfaces for viewing and changing access permissions and object ownership (for

example, Windows Explorer Security dialog panel). Internally, a Windows SD is converted to an NFS V4

access control list (ACL) object, which ensures that access control is performed consistently on other

supported operating systems. GPFS supports all discretionary access control list (DACL) operations,

including inheritance. GPFS is capable of storing system access control list (SACL) objects, but generation

of AUDIT and ALARM events specified in SACL contents is not supported.

An important distinction between GPFS and Microsoft Windows NT File Systems (NTFS) is the default set

of permissions for the root (top-level) directory on the file system. On a typical NTFS volume, the DACL for

the top-level folder has several inheritable entries that grant full access to certain special accounts, as well

as some level of access to nonprivileged users. For example, on a typical NTFS volume, the members of

the local group Users would be able to create folders and files in the top-level folder. This approach differs

substantially from the traditional UNIX convention where the root directory on any file system is only

writable by the local root superuser by default. GPFS adheres to the latter convention; the root directory

on a new file system is only writable by the UNIX user root, and does not have an extended ACL when

the file system is created. This is to avoid impacting performance in UNIX-only environments, where the

use of extended ACLs is not common.

54 GPFS: Concepts, Planning, and Installation Guide

|

|

|
|

|

|

|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

When a new GPFS file system is accessed from a Windows client for the first time, a security descriptor

object is created for the root directory automatically, and it will contain a noninheritable DACL that grants

full access to the local Administrators group and read-only access to the local Everyone group. This

allows only privileged Windows users to create new files and folders. Because the root directory DACL has

no inheritable entries, new objects will be created with a default DACL that grants local Administrators

and SYSTEM accounts full access. Optionally, the local system administrator could create a subdirectory

structure for Windows users, and explicitly set DACLs on new directories as appropriate (for example,

giving the necessary level of access to nonprivileged users).

Note: Some applications expect to find NTFS-style permissions on all file systems and they might not

function properly when that is not the case. Running such an application in a GPFS folder where

permissions have been set similar to NTFS defaults might correct this.

Installing GPFS prerequisites

This topic provides details on configuring a Windows domain to support a GPFS cluster, and details on

setting up individual Windows systems prior to installing GPFS.

Restriction: GPFS runs only on Windows Server 2003 R2 x64 with SP2 or higher.

Perform the following steps:

1. Set up the Windows domain (see “Setting up the Windows domain”).

2. Create an administrative account (see “Creating the GPFS administrative account” on page 56).

3. Configure network settings (see “Configuring Windows” on page 56).

4. Install SUA (see “Installing the Subsystem for UNIX-based Applications” on page 57).

5. Install SUA Hotfix updates (see “Downloading and installing SUA hotfix updates” on page 57).

6. Install and configure remote shell and copy (see “Installing and configuring OpenSSH” on page 57).

See the GPFS FAQ at http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/
com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html for the latest:

v Software recommendations

v Configuration information

To perform these operations, you must be a member of the Administrators group on the local computer or

a member of the Domain Admins group. To perform GPFS administrative operations, you should login as

the special root user account described in “Creating the GPFS administrative account” on page 56.

Setting up the Windows domain

GPFS for Windows runs on systems that are part of a Windows domain. It relies on Active Directory

Domain Services to provide users with a consistent identity between the Windows nodes in a cluster.

GPFS can also exploit a Windows Server feature called Identity Management for UNIX (IMU) to provide

consistent identities between all nodes in a cluster.

GPFS expects that Windows nodes in a cluster are members of the same Windows domain. This gives

domain users a consistent identity and consistent file access rights independent of the system they are

using. The domain controllers, which run the Active Directory Domain Services, are not required to be

members of the GPFS cluster.

Refer to your Windows Server documentation for information on how to install and administer Active

Directory Domain Services.

Chapter 6. Installing GPFS on Windows nodes 55

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|
|
|

|

|
|
|
|

|
|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html

GPFS can exploit the Identity Management for UNIX (IMU) service for mapping users and groups between

Windows and UNIX. IMU is an optional component of Microsoft Windows Server 2003R2 that can be

installed on domain controllers. GPFS does not require IMU.

For IMU installation and configuration information, see the Identity management on Windows topic in the

GPFS: Advanced Administration Guide.

Tip: Your Windows domain might not have its own Domain Name System (DNS) subdomain. If this is the

case, explicitly set each node’s primary DNS suffix and disable the option to change primary DNS

suffix when domain membership changes. For details on how to make this change, search for

Change the DNS suffix of your computer in your system’s Help and Support Center.

Creating the GPFS administrative account

GPFS uses an administrative account in the Windows domain named root in order to interoperate with

UNIX nodes in the cluster. Create this administrative account as follows:

1. Create a domain user with the logon name root.

2. Add user root to the Domain Admins group.

3. Specify in root’s profile a Home folder in Local path that does not include spaces in the path name,

such as C:\Users\root.

Step 3 avoids problems in the SUA environment (described in “Installing the Subsystem for UNIX-based

Applications” on page 57) that occur because the default value for a user’s HOME directory on Windows

Server 2003 is a path like C:\Documents and Settings\root, which contains spaces. The HOME directory

specified in root’s profile should get created the first time root logs on a system. If root’s HOME is created

by other means, be sure root is the directory’s owner.

For more information, see the FAQ at http://www.interopsystems.com/community/faqs.aspx

Configuring Windows

This topic provides some details on installing and configuring Windows on systems that will be added to a

GPFS cluster.

GPFS supports Microsoft Windows Server 2003 R2 for x64-Based Systems, and requires Service Pack 2

(SP2). Both the Standard and Enterprise editions of this operating system are supported.

All Windows systems that will be added to the same GPFS cluster should be members of the same

Windows domain.

GPFS requires two optional system components included with Windows Server 2003 R2:

v Microsoft .NET Framework 2.0

v Subsystem for UNIX-based Applications (see “Installing the Subsystem for UNIX-based Applications” on

page 57)

To install these optional components, open Add or Remove Programs in the Control Panel, and then

click Add/Remove Windows Components.

GPFS also requires that you modify the default Windows Firewall settings. The simplest change that will

allow GPFS to operate properly is to disable the firewall. Open Windows Firewall in the Control Panel,

and select Off under the General tab. For related information, see the GPFS port usage topic in the

GPFS: Advanced Administration Guide.

56 GPFS: Concepts, Planning, and Installation Guide

|
|
|

|
|

|
|
|
|

|

|
|

|

|

|
|

|
|
|
|
|

|

|

|
|

|
|

|
|

|

|

|
|

|
|

|
|
|
|

http://www.interopsystems.com/community/faqs.aspx

Installing the Subsystem for UNIX-based Applications

The Subsystem for UNIX-based Applications (SUA) is a POSIX subsystem included with Windows Server

2003 R2. GPFS uses this component to support many of its programs and administrative scripts. System

administrators have the option of using either a SUA shell such as ksh or the standard Windows

Command Prompt to run GPFS commands.

The SUA environment is composed of two parts:

1. The Subsystem for UNIX-based Applications (Subsystem)

2. The Utilities and SDK for UNIX-based Applications (Utilities)

Both parts must be installed before installing GPFS. The Subsystem provides runtime support for POSIX

applications and is a component included with the Windows operating system. The Utilities package is

downloaded from Microsoft’s Web site and installed separately. It provides a UNIX-like environment that

includes such programs as grep, ksh, ls, and ps.

Note: Install SUA on each Windows node after adding it to the Windows domain (otherwise, uninstall the

SUA SDK and SUA, and then reinstall them).

To install SUA and the Utilities and SDK for SUA, follow these steps:

1. Add the POSIX Subsystem (an optional component on Server 2003 R2) by clicking Control Panel →

Add or Remove Programs → Add/Remove Windows Components.

2. While this component is being installed, you are prompted to download the Utilities and SDK. Click yes

if you have not already downloaded this package.

3. Start the Utilities installation. The default options are not sufficient for GPFS, so select Entire feature

at the top level to include all elements. On the Security Settings panel, check Enable setuid behavior

for SUA programs and check Change the default behavior to case sensitive.

Downloading and installing SUA hotfix updates

Microsoft provides hotfix updates that improve the reliability of Subsystem for UNIX-based Applications

(SUA) in support of GPFS. Download and install the updates after SUA is installed.

For the latest hotfixes, see the GPFS FAQ athttp://publib.boulder.ibm.com/infocenter/clresctr/vxrx/
index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html

You can verify that the updates are installed by clicking through the Add or Remove Programs control

panel. Select the Show updates option at the top.

Installing and configuring OpenSSH

GPFS uses the SUA Community version of OpenSSH to support its administrative functions. Microsoft

does not provide SSH support with SUA, and the remote shell (rsh) service included with SUA has

limitations that make it unsuitable for GPFS. Interop Systems Inc. hosts the SUA Community Web site

(http://www.interopsystems.com/community/), which includes a forum and other helpful resources related to

SUA and Windows/UNIX interoperability.

The steps below outline a procedure for installing OpenSSH. This information could change at any time.

Refer to the SUA Community Web site (http://www.suacommunity.com/forum/default.aspx) for the current

and complete installation instructions. Although Interop Systems provides SUA Add-on Bundles that include

OpenSSH and many other packages, IBM recommends installing only the SUA Community packages

required in your environment.

1. Register with the site (http://www.suacommunity.com/forum/register.aspx).

Chapter 6. Installing GPFS on Windows nodes 57

|

|
|
|
|

|

|

|

|
|
|
|

|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

|

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html
http://www.interopsystems.com/community/
http://www.suacommunity.com/forum/default.aspx
http://www.suacommunity.com/forum/register.aspx

2. Download the Boostrap Installer (3.5) (ftp://ftp.interopsystems.com/pkgs/bootstrap/pkg-current-
bootstrap35.exe) and install it on your Windows nodes.

3. From a SUA shell, run pkg_update -L openssh.

Once OpenSSH is installed and configured, verify that the user root can issue ssh and scp commands

between nodes in the GPFS cluster without being prompted for a password. The ssh and scp commands

should be verified as working using just the host name and the full DNS name of every node in the cluster,

including the local node. For more information about ssh, see the Troubleshooting Windows topic in the

GPFS: Problem Determination Guide.

Note: You must ensure that nodes in the GPFS cluster can issue remote shell (ssh) and copy (scp)

commands without the use of a password as user root.

Procedure for installing GPFS on Windows nodes

Before installing GPFS on Windows nodes, verify that all the installation prerequisites have been met.

For more information, see “Installing GPFS prerequisites” on page 55.

To install GPFS, follow these steps:

1. Run the setup program, gpfs-3.2.1.5-WindowsServer2003R2-x64.msi, from the product media and

accept the license.

For more information, refer to Chapter 3, “Steps to establishing and starting your GPFS cluster,” on

page 41.

2. Download and install the latest service level of GPFS from the GPFS support site at

http://www14.software.ibm.com/webapp/set2/sas/f/gpfs/home.html

58 GPFS: Concepts, Planning, and Installation Guide

|
|

|

|
|
|
|
|

|
|

|
|

|

|

|

|
|

|
|

|
|

http://www14.software.ibm.com/webapp/set2/sas/f/gpfs/home.html

Chapter 7. Migration, coexistence and compatibility

For the latest information on migration, coexistence, and compatibility, see the GPFS FAQ at

publib.boulder.ibm.com/infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html

To migrate to GPFS 3.2, you must first consider whether you are migrating from GPFS 3.1 or an earlier

release of GPFS, and then consider coexistence and compatibility issues.

GPFS migration consists of these topics:

v “Migrating to GPFS 3.2 from GPFS 3.1”

v “Migrating to GPFS 3.2 from GPFS 2.3”

v “Migrating to GPFS 3.2 from GPFS 2.2 or earlier releases of GPFS” on page 60

v “Completing the migration to a new level of GPFS” on page 62

v “Reverting to the previous level of GPFS” on page 64

v “Coexistence considerations” on page 65

v “Compatibility considerations” on page 65

v “Applying maintenance to your GPFS system” on page 66

Migrating to GPFS 3.2 from GPFS 3.1

GPFS 3.2 supports node-at-a-time migration if the previous nodes in the cluster are running GPFS 3.1.

GPFS 3.1 nodes can coexist and interoperate with nodes running GPFS 3.2. However, some new

functions (such as creating a GPFS file system to be mountable on Microsoft Windows), that depend on

format changes will not be available until all nodes have been migrated.

To migrate a cluster to GPFS 3.2 from GPFS 3.1, perform these steps:

1. Stop all user activity in the file systems on the designated node.

2. Cleanly unmount the mounted GPFS file system. Do not use force unmount on the designated node.

3. Follow any local administrative backup procedures to ensure protection of your file system data in the

event of a failure.

4. Stop GPFS on the node to be migrated in the cluster, for example:

mmshutdown -N k164n04

5. Copy the installation images and install the new code on each node in the cluster as described in

Chapter 4, “Installing GPFS on Linux nodes,” on page 43 or Chapter 5, “Installing GPFS on AIX

nodes,” on page 47.

6. Start GPFS on the designated node in the new cluster, for example, issue:

mmstartup -N k164n04

7. Mount the file systems if this is not done automatically when the GPFS daemon starts.

When all nodes in the cluster have been successfully migrated to the new GPFS level, proceed to

“Completing the migration to a new level of GPFS” on page 62.

Migrating to GPFS 3.2 from GPFS 2.3

You can migrate to GPFS 3.2 from GPFS 2.3 by following the steps in this procedure.

To migrate a cluster to GPFS 3.2 from GPFS 2.3, perform these steps:

1. Stop all user activity in the file systems.

2. Cleanly unmount all mounted GPFS file systems. Do not use force unmount.

© Copyright IBM Corp. 1998, 2008 59

|
|
|

3. Follow any local administrative backup procedures to ensure protection of your file system data in the

event of a failure.

4. Stop GPFS on all nodes in the cluster:

mmshutdown -a

5. Copy the installation images and install the new code on each node in the cluster as described in

Chapter 4, “Installing GPFS on Linux nodes,” on page 43 or Chapter 5, “Installing GPFS on AIX

nodes,” on page 47.

6. Start GPFS on all nodes in the new cluster:

mmstartup -a

7. Mount the file systems if this is not done automatically when the GPFS daemon starts.

8. Proceed to “Completing the migration to a new level of GPFS” on page 62.

Migrating to GPFS 3.2 from GPFS 2.2 or earlier releases of GPFS

You can migrate to GPFS 3.2 from GPFS 2.2 or earlier releases by following the steps in this procedure.

In release 2.2 and earlier, GPFS could be configured in a number of cluster types: hacmp, lc, rpd, and

sp. The different cluster types supported different disk types such as virtual shared disks, AIX logical

volumes, and NSDs. In addition, one could divide a GPFS cluster into a number of independent node sets,

which determined the scope of the nodes on which a given file system could be mounted.

Starting with GPFS 2.3, many of the following concepts have been eliminated and streamlined. For

example:

v The only (implied) GPFS cluster type is lc.

v The concept of node sets is eliminated.

v All nodes in the GPFS cluster are now automatically members of the one and only node set that you

can have in a GPFS cluster.

v The dependence on RSCT has been removed.

v The only disk type that you can have is NSD.

NSDs can be created out of any of the existing disk types, preserving file systems created prior to

GPFS 2.3.

All of these changes, plus some of the new features that are introduced with GPFS 2.3, require that you

rebuild your existing cluster. For a complete list of new functions and changes, see the Summary of

changes. For an overview and description of GPFS clusters and NSD, see Chapter 1, “Introducing General

Parallel File System,” on page 1.

If you currently use more than one node set, you need to decide whether you want to combine the node

sets into one GPFS cluster or create more than one GPFS cluster to correspond to each of your node

sets. The migration procedure assumes that you are going to create a single GPFS cluster and move all of

your file systems into it. You can always create new clusters later and move your file systems around

using the mmexportfs and mmimportfs commands.

Note:

1. Before you proceed, it is recommended that you read the notes that are specific to your existing

cluster environment.

2. GPFS cluster type sp: The mmcrcluster command is not available on this cluster type. If you

have an sp cluster type, use the mmlsnode -a command to obtain the names of your node

sets and the nodes that belong to them.

To determine your cluster type, issue the mmlscluster command, which displays output similar to:

60 GPFS: Concepts, Planning, and Installation Guide

GPFS cluster information

========================

 GPFS cluster type: rpd

 GPFS cluster id: gpfs0103263150103

 RSCT peer domain name: rpd12

 Remote shell command: /usr/bin/rsh

 Remote file copy command: /usr/bin/rcp

GPFS cluster data repository servers:

 Primary server: k145n43.kgn.ibm.com

 Secondary server: k145n44.kgn.ibm.com

Nodes in nodeset set1:

 1 k145n29 9.114.133.29 k145n29.kgn.ibm.com

 2 k145n30 9.114.133.30 k145n30.kgn.ibm.com

 3 k145n31 9.114.133.31 k145n31.kgn.ibm.com

 4 k145n32 9.114.133.32 k145n32.kgn.ibm.com

Nodes in nodeset set2:

 5 k145n33 9.114.133.33 k145n33.kgn.ibm.com

 6 k145n34 9.114.133.34 k145n34.kgn.ibm.com

 7 k145n35 9.114.133.35 k145n35.kgn.ibm.com

 8 k145n36 9.114.133.36 k145n36.kgn.ibm.com

 9 k145n37 9.114.133.37 k145n37.kgn.ibm.com

 10 k145n38 9.114.133.38 k145n38.kgn.ibm.com

 11 k145n39 9.114.133.39 k145n39.kgn.ibm.com

 12 k145n40 9.114.133.40 k145n40.kgn.ibm.com

 13 k145n41 9.114.133.41 k145n41.kgn.ibm.com

 14 k145n42 9.114.133.42 k145n42.kgn.ibm.com

 15 k145n43 9.114.133.43 k145n43.kgn.ibm.com

 16 k145n44 9.114.133.44 k145n44.kgn.ibm.com

 17 k145n45 9.114.133.45 k145n45.kgn.ibm.com

 18 k145n46 9.114.133.46 k145n46.kgn.ibm.com

Cluster nodes that are not assigned to a nodeset:

 19 k145n47 9.114.133.47 k145n47.kgn.ibm.com

v If your current cluster type is lc:

Because your disks are already defined as NSDs, there are no additional considerations. Some or all of

your nodes are members of an RSCT peer domain. Because GPFS no longer depends on RSCT,

whether you continue to keep the nodes in the domain from now on should be dictated by other

non-GPFS considerations you may have. GPFS will not be affected one way or another.

v If your current cluster type is hacmp or rpd:

Your current GPFS disks are either virtual shared disks or AIX logical volumes. They will continue to be

the same, but GPFS automatically converts them into NSDs as part of the mmimportfs command

processing (see step 13 on page 62). During the import process, even though your disks are converted

to NSDs, the names of your disks are preserved. For example, you may have NSDs with the names

gpfs5vsd or gpfs7lv. This does not affect the performance of your file system in any way.

Although GPFS does not depend on RSCT any more, if your current disks are virtual shared disks, you

will have to maintain the node membership in the RSCT peer domain because of the requirements of

the IBM virtual shared disk subsystem.

v If your current cluster type is sp:

Your current GPFS disks are virtual shared disks. They will continue to be the same, but GPFS will

automatically convert them into NSDs as part of the mmimportfs command processing (see step 13 on

page 62). During the import process, even though your disks are converted to NSDs, the names of your

disks are preserved. For example, you may have an NSD with the name gpfs5vsd. This does not affect

the performance of your file system in any way.

Chapter 7. Migration, coexistence and compatibility 61

To migrate your GPFS cluster to GPFS 3.2, follow these steps:

 1. Ensure that all disks in all GPFS file systems to be migrated are in working order by issuing the

mmlsdisk command. Verify that the disk status is ready and availability is up. If not, correct any

problems and reissue the mmlsdisk command before continuing.

 2. Stop all user activity in the file systems.

 3. Follow any local administrative backup procedures to ensure protection of your file system data in the

event of a failure.

 4. Cleanly unmount all mounted GPFS file systems. Do not use force unmount.

 5. Shut down the GPFS daemon on all nodes in the cluster:

mmshutdown -a

 6. Export the GPFS file systems by issuing the mmexportfs command:

mmexportfs all -o exportDataFile

This command creates the configuration output file exportDataFile, which contains all exported

configuration data. Retain this file because it is required when issuing the mmimportfs command to

import your file systems into the new cluster or in the event that you decide to go back to the

previous release.

 7. Delete all existing nodes. For each node set in the cluster, where nodesetId is the name of the node

set, issue:

 mmdelnode -a -C nodesetId

 8. Delete the existing cluster by issuing:

mmdelcluster -a

Note: This step does not apply to GPFS cluster type sp.

 9. Ensure that all disks from the old GPFS cluster are properly connected and are online and available

to the appropriate nodes of the new GPFS cluster.

10. Install the new level of GPFS on the affected nodes:

v For Linux nodes, see Chapter 4, “Installing GPFS on Linux nodes,” on page 43

v For AIX nodes, see Chapter 5, “Installing GPFS on AIX nodes,” on page 47

11. Decide which nodes in your system will be quorum nodes (see “Quorum” on page 15).

12. Create a new GPFS cluster across all desired nodes by issuing the mmcrcluster command.

13. To complete the movement of your file systems to the new cluster, using the configuration file created

in step 6, issue:

mmimportfs all -i exportDataFile

14. Start GPFS on all nodes in the new cluster:

mmstartup -a

15. Mount the file systems if this is not done automatically when the GPFS daemon starts.

16. Proceed to “Completing the migration to a new level of GPFS.”

Completing the migration to a new level of GPFS

You should operate GPFS with the new level of code until you are sure that you want to permanently

migrate. If you decide not to migrate, you can revert to the previous level of GPFS.

Note: If you need to revert to the previous level, see “Reverting to the previous level of GPFS” on page

64 for more information.

Once the new level of GPFS is satisfactory for your environment, you must complete migration of both the

cluster configuration data and all file systems.

62 GPFS: Concepts, Planning, and Installation Guide

After you have migrated all nodes to the latest GPFS code:

1. Migrate the cluster configuration data and enable new cluster-wide functionality:

mmchconfig release=LATEST

The mmchconfig command will list the names of the nodes that are not available or cannot be

reached. If this is the case, correct the problem and reissue the command until all nodes can be

verified and the command completes successfully.

2. Enable backward-compatible format changes or migrate all file systems to the latest metadata format

changes.

 Attention: Before continuing with this step, it’s important to understand the differences between

mmchfs -V compat and mmchfs -V full:

v If you issue mmchfs -V compat, it enables only backward-compatible format changes. Nodes in

remote clusters that were able to mount the file system before will continue to be able to do so.

v If you issue mmchfs -V full, it enables all new functions that require different on-disk data

structures. Nodes in remote clusters running an older GPFS version will no longer be able to mount

the file system. If there are any nodes running an older GPFS version that have the file system

mounted at the time this command is issued, the mmchfs command will fail.

To enable backward-compatible format changes, issue:

mmchfs filesystem -V compat

To migrate all file systems to the latest metadata format changes, issue:

mmchfs filesystem -V full

where: filesystem is the name of the file system.

3. If you were using single-node quorum in versions prior to GPFS 2.3, you must transition to the new

node quorum with tiebreaker disks. See “Quorum” on page 15.

Note: Only file systems at GPFS 3.2.1.5x are mountable on Windows nodes.

Additional considerations when migrating GPFS 2.3 and earlier file

systems

The concept of storage pools and filesets does not exist in file systems that are at version level 8.00

(GPFS 2.3) or earlier. When such a file system is migrated to the latest GPFS level, the migration process

automatically creates a ″root″ fileset and ″system″ storage pool.

Root fileset

During migration, all existing files and directories are assigned to the root fileset. After migration, you can:

v Create new filesets with mmcrfileset

v Link filesets into the name space with mmlinkfileset

v Copy data into the filesets using ordinary file system tools such as cp or tar

Note: The migration process will not automatically enable fileset quotas in quota enabled file systems.

You must do this explicitly using the mmchfs -Q yes command. That command will automatically

create the fileset.quota file in the root directory of the file system

System storage pool

During migration, all of the disks are assigned to the system storage pool. When you add new disks, you

can assign them to other storage pools. Adding new disks automatically creates the storage pool named in

the disk descriptors. To move a disk already belonging to the file system to a new storage pool use

mmdeldisk followed by mmadddisk.

Chapter 7. Migration, coexistence and compatibility 63

|

Reverting to the previous level of GPFS

If you should decide not to continue the migration to the latest level of GPFS, and you have not yet issued

the mmchfs -V command, you can reinstall the earlier level of GPFS.

You can revert back to either GPFS 3.1 or GPFS 2.3. Earlier GPFS releases are no longer supported by

IBM.

The procedure differs depending on whether you have issued the mmchconfig release=LATEST

command or not.

Reverting to a previous level of GPFS when you have not issued

mmchconfig release=LATEST

If you have not issued the mmchconfig release=LATEST command, perform these steps:

1. Stop all user activity in the file systems.

2. Cleanly unmount all mounted GPFS file systems. Do not use force unmount.

3. Stop GPFS on all nodes in the cluster:

mmshutdown -a

4. Run the appropriate de-installation program to remove GPFS from each node in the cluster. For

example:

v For Linux nodes:

rpm -e gpfs.gpl gpfs.base gpfs.docs

v For AIX nodes:

installp -u gpfs

For the remaining steps, see the appropriate for your release GPFS: Concepts, Planning, and

Installation Guide at publib.boulder.ibm.com/infocenter/clresctr/topic/ com.ibm.cluster.gpfs.doc/

gpfsbooks.html.

5. Copy the installation images of the previous GPFS code on all affected nodes.

6. Install the original install images and all required PTFs.

7. For Linux nodes running GPFS, you must rebuild the GPFS portability layer.

8. Reboot all nodes.

Reverting to a previous level of GPFS when you have issued

mmchconfig release=LATEST

If you have issued the mmchconfig release=LATEST command, you must rebuild the cluster. Perform

these steps:

 1. Stop all user activity in the file systems.

 2. Cleanly unmount all mounted GPFS file systems. Do not use force unmount.

 3. Stop GPFS on all nodes in the cluster:

mmshutdown -a

 4. Export the GPFS file systems by issuing the mmexportfs command:

mmexportfs all -o exportDataFile

 5. Delete the cluster:

mmdelnode -a

 6. Run the appropriate de-installation program to remove GPFS from each node in the cluster. For

example:

v For Linux nodes:

64 GPFS: Concepts, Planning, and Installation Guide

rpm -e gpfs.gpl gpfs.base gpfs.docs

v For AIX nodes:

installp -u gpfs

For the remaining steps, see the appropriate for your release GPFS: Concepts, Planning, and

Installation Guide at publib.boulder.ibm.com/infocenter/clresctr/topic/ com.ibm.cluster.gpfs.doc/

gpfsbooks.html.

 7. Copy the installation images of the previous GPFS code on all affected nodes.

 8. Install the original installation images and all required PTFs.

 9. For Linux nodes running GPFS, you must rebuild the GPFS portability layer.

10. Reboot all nodes.

11. Recreate your original cluster using the mmcrcluster command.

12. Import the file system information using the mmimportfs command. Specify the file created by the

mmexportfs command from Step 4 on page 64 above:

mmimportfs all -i exportDataFile

13. Start GPFS on all nodes in the cluster, issue:

mmstartup -a

14. Mount the file systems if this is not done automatically when the GPFS daemon starts.

Coexistence considerations

Each GPFS cluster can have multiple GPFS file systems that coexist on the cluster, but function

independently of each other. In addition, each file system might have different data management

programs.

Note: The GPFS Data Management API (DMAPI) and GPFS file system snapshots can coexist; however,

access to the files in a snapshot using DMAPI is restricted. See the General Parallel File System:

Data Management API Guide for more information.

Compatibility considerations

All applications that ran on the previous release of GPFS will run on the new level of GPFS. File systems

that were created under the previous release of GPFS can be used under the new level of GPFS.

Important: Once a file system has been migrated explicitly by issuing the mmchfs -V full command, the

disk images can no longer be read by a prior version of GPFS. You will be required to

re-create the file system from the backup media and restore the content if you choose to go

back after this command has been issued. The same rules apply for file systems that are

newly created with GPFS 3.2.1.

Considerations for IBM Tivoli Storage Manager for Space Management

Migrating to GPFS V3.2 requires consideration for IBM Tivoli Storage Manager for Space Management.

IBM Tivoli Storage Manager for Space Management requires that all nodes in a cluster are configured with

a DMAPI file handle size of 32 bytes.

During migration, it is possible that some nodes in a cluster are at GPFS V3.2, and some nodes in the

cluster are at a lower level. During that time, the DMAPI file handle size can be 16 bytes. Until all nodes in

the cluster have been updated to GPFS V3.2, and the DMAPI file handle size is changed to 32 bytes, IBM

Tivoli Storage Manager for Space Management must be disabled.

After all nodes in the cluster are upgraded to GPFS 3.2 and you change the DMAPI file handle size to 32

bytes, you can enable IBM Tivoli Storage Manager for Space Management.

Chapter 7. Migration, coexistence and compatibility 65

|

|

|
|
|

|
|
|
|

|
|

The DMAPI file handle size is configured with the dmapiFileHandleSize option. For more information

about this option, see the topic “GPFS configuration options for DMAPI” in the General Parallel File

System: Data Management API Guide.

Applying maintenance to your GPFS system

Before applying maintenance to your GPFS system, there are several things you should consider.

Remember that:

1. There is limited interoperability between GPFS 3.2 and GPFS 3.1 nodes. This function is intended for

short-term use. You will not get the full functions of GPFS 3.2 until all nodes are using GPFS 3.2.

2. Interoperability between maintenance levels will be specified on a per-maintenance-level basis. See

the GPFS FAQ at: http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/
com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html for the latest on service information for GPFS.

3. Maintenance images for GPFS Linux retrieved from the web are named differently from the installation

images of the GPFS Linux product. Maintenance images contain the word update in their name, for

example: gpfs.base-3.2-1-1.i386.update.rpm.

4. For the latest service information, see the GPFS FAQ at publib.boulder.ibm.com/infocenter/clresctr/
topic/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html

To download fixes for GPFS go to: https://www14.software.ibm.com/webapp/set2/sas/f/gpfs/home.html and

obtain the fixes for your hardware and operating system.

To install the latest fixes:

v For Linux nodes, see Chapter 4, “Installing GPFS on Linux nodes,” on page 43.

v For AIX nodes, see Chapter 5, “Installing GPFS on AIX nodes,” on page 47.

v For Windows nodes, see Chapter 6, “Installing GPFS on Windows nodes,” on page 51.

66 GPFS: Concepts, Planning, and Installation Guide

|
|
|

|
|

|

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html
https://www14.software.ibm.com/webapp/set2/sas/f/gpfs/home.html

Chapter 8. Configuring and tuning your system for GPFS

In addition to configuring your GPFS cluster, you need to configure and tune your system.

Note: See “GPFS cluster creation considerations” on page 20 for more information.

Values suggested here reflect evaluations made at the time this documentation was written. For the latest

system configuration settings, see the GPFS FAQ at publib.boulder.ibm.com/infocenter/clresctr/topic/
com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html.

Additional GPFS and system configuration and tuning considerations include:

1. “General system configuration and tuning considerations”

2. “Linux configuration and tuning considerations” on page 70

3. “AIX configuration and tuning considerations” on page 73

4. “Configuring Windows” on page 56

See the General Parallel File System: Advanced Administration Guide for information on:

v The mmpmon command for analyzing I/O performance on a per-node basis in Monitoring GPFS I/O

performance with the mmpmon command

v Large system considerations for information on using multiple token servers.

General system configuration and tuning considerations

You need to take into account some general system configuration and tuning considerations. This topic

points you to the detailed information.

For the latest system configuration settings, see the GPFS FAQ at publib.boulder.ibm.com/infocenter/
clresctr/topic/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html.

Configuration and tuning considerations for all systems include:

1. “Clock synchronization”

2. “GPFS administration security”

3. “Cache usage” on page 68

4. “GPFS I/O” on page 69

5. “Access patterns” on page 70

6. “Aggregate network interfaces” on page 70

7. “Swap space” on page 70

Clock synchronization

The clocks of all nodes in the GPFS cluster must be synchronized. If this is not done, NFS access to the

data, as well as other GPFS file system operations may be disrupted.

GPFS administration security

Before administering your GPFS file system, make certain that your system has been properly configured

for security. This includes:

v Assigning root authority to perform all GPFS administration tasks except:

– Tasks with functions limited to listing GPFS operating characteristics.

– Tasks related to modifying individual user file attributes.

© Copyright IBM Corp. 1998, 2008 67

|

v Establishing the authentication method between nodes in the GPFS cluster.

– Until you set the authentication method, you cannot issue any GPFS commands.

v Designating a remote communication program for remote shell and remote file copy commands.

The default remote communication commands are rcp and rsh. If you have designated the use of a

different remote communication program, you must make certain that:

– You have granted proper authorization to all nodes in the GPFS cluster.

– The nodes in the GPFS cluster can communicate without the use of a password and without any

extraneous messages.

Note: If you are using rcp and rsh commands for remote communication, the root user must have a

properly configured .rhosts file in the home directory on each node in the GPFS cluster.

Cache usage

GPFS creates a number of cache segments on each node in the cluster. The amount of cache is

controlled by three attributes. These attributes have default values at cluster creation time and may be

changed through the mmchconfig command:

pagepool

The GPFS pagepool is used to cache user data and file system metadata. The pagepool

mechanism allows GPFS to implement read as well as write requests asynchronously. Increasing

the size of pagepool increases the amount of data or metadata that GPFS can cache without

requiring synchronous I/O. The amount of memory available for GPFS pagepool on a particular

node may be restricted by the operating system and other software running on the node.

 The optimal size of the pagepool depends on the needs of the application and effective caching of

its re-accessed data. For systems where applications access large files, reuse data, benefit from

GPFS prefetching of data, or have a random I/O pattern, increasing the value for pagepool may

prove beneficial. However, if the value is set too large, GPFS will not start. See the GPFS:

Problem Determination Guide and search on GPFS daemon will not come up.

To change the pagepool to 100 MB:

 mmchconfig pagepool=100M

maxFilesToCache

The total number of different files that can be cached at one time. Every entry in the file cache

requires some pageable memory to hold the content of the file’s inode plus control data structures.

This is in addition to any of the file’s data and indirect blocks that might be cached in the page

pool.

 The total amount of memory required for inodes and control data structures can be calculated as:

maxFilesToCache × 2.5 KB

Valid values of maxFilesToCache range from 1 to 100,000. For systems where applications use a

large number of files, of any size, increasing the value for maxFilesToCache may prove

beneficial. This is particularly true for systems where a large number of small files are accessed.

The value should be large enough to handle the number of concurrently open files plus allow

caching of recently used files. The default value is 1000.

maxStatCache

This parameter sets aside additional pageable memory to cache attributes of files that are not

currently in the regular file cache. This is useful to improve the performance of both the system

and GPFS stat() calls for applications with a working set that does not fit in the regular file cache.

 The memory occupied by the stat cache can be calculated as:

 maxStatCache × 176 bytes

68 GPFS: Concepts, Planning, and Installation Guide

Valid values of maxStatCache range from 0 to 10,000,000. For systems where applications test

the existence of files, or the properties of files, without actually opening them (as backup

applications do), increasing the value for maxStatCache may prove beneficial. The default value

is:

 4 × maxFilesToCache

The total amount of memory GPFS uses to cache file data and metadata is arrived at by adding pagepool

to the amount of memory required to hold inodes and control data structures (maxFilesToCache × 2.5

KB), and the memory for the stat cache (maxStatCache × 176 bytes) together. The combined amount of

memory to hold inodes, control data structures, and the stat cache is limited to 50% of the physical

memory on a node running GPFS.

During configuration, you can specify the maxFilesToCache, maxStatCache, and pagepool parameters

that control how much cache is dedicated to GPFS. These values can be changed later, so experiment

with larger values to find the optimum cache size that improves GPFS performance without negatively

affecting other applications.

The mmchconfig command can be used to change the values of maxFilesToCache, maxStatCache,

and pagepool. The pagepool parameter is the only one of these parameters that may be changed while

the GPFS daemon is running. A pagepool change occurs immediately when using the -i option on the

mmchconfig command. Changes to the other values are effective only after the daemon is restarted.

For further information on these cache settings for GPFS, refer to “GPFS and memory” on page 83.

The GPFS token system’s affect on cache settings

Lock tokens play a role in maintaining cache consistency between nodes. A token allows a node to cache

data it has read from disk, because the data cannot be modified elsewhere without revoking the token first.

Each token manager can handle approximately 300,000 different file tokens (this number depends on how

many distinct byte-range tokens are used when multiple nodes access the same file). If you divide the

300,000 by the number of nodes in the GPFS cluster you get a value that should approximately equal

maxFilesToCache (the total number of different files that can be cached at one time) + maxStatCache

(additional pageable memory to cache file attributes that are not currently in the regular file cache).

The configuration parameter:

v maxFilesToCache should be large enough to handle the number of concurrently open files plus allow

caching of recently used files.

v maxStatCache defaults to 4 x maxFilesToCache but can be set independently to balance the speed of

ls -l calls with the memory load on the token manager memory.

v maxStatCache can be set higher on user-interactive-nodes and smaller on dedicated compute-nodes,

since ls -l performance is mostly a human response issue.

v maxFilesToCache and maxStatCache are indirectly affected by the distributedTokenServer

configuration parameter because distributing the tokens across multiple token servers might allow

keeping more tokens than if a file system has only one token server.

GPFS I/O

The maxMBpS option determines the maximum amount of I/O in MB that can be submitted by GPFS per

second. If the default value is not adjusted accordingly it will affect GPFS performance. Note that setting

this number too high can have an adverse effect on performance of the system since overrunning the

capabilities of the I/O bus or network adapter tends to drastically degrade throughput. This number is

normally set after empirical study to determine your nodes I/O bandwidth limits. The default value is 150

MB per second. To change maxMBpS to 500 MB per second:

mmchconfig maxMBpS=500

Chapter 8. Configuring and tuning your system for GPFS 69

Access patterns

GPFS attempts to recognize the pattern of accesses (such as strided sequential access) that an

application makes to an open file. If GPFS recognizes the access pattern, it will optimize its own behavior.

For example, GPFS can recognize sequential reads and will retrieve file blocks before they are required by

the application. However, in some cases GPFS does not recognize the access pattern of the application or

cannot optimize its data transfers. In these situations, you may improve GPFS performance if the

application explicitly discloses aspects of its access pattern to GPFS through the gpfs_fcntl() library call.

Aggregate network interfaces

It is possible to aggregate multiple physical Ethernet interfaces into a single virtual interface. This is known

as Channel Bonding on Linux and EtherChannel/IEEE 802.3ad Link Aggregation on AIX. GPFS supports

using such aggregate interfaces. The main benefit is increased bandwidth. The aggregated interface has

the network bandwidth close to the total bandwidth of all its physical adapters. Another benefit is improved

fault tolerance. If a physical adapter fails, the packets are automatically sent on the next available adapter

without service disruption.

EtherChannel and IEEE802.3ad each requires support within the Ethernet switch. Refer to the product

documentation for your switch to determine if EtherChannel is supported.

For details on how to configure EtherChannel and IEEE 802.3ad Link Aggregation:

1. Go to

publib16.boulder.ibm.com/pseries/en_US/aixbman/commadmn/ tcp_etherchannel.htm#yu528frokferg

2. Search on Configuring EtherChannel

Hint: Make certain that the switch ports are configured for LACP (the default is PAGP).

For details on how to verify whether the adapter and the switch are operating with the correct protocols for

IEEE 802.3ad:

1. Go to

publib16.boulder.ibm.com/pseries/en_US/aixbman/commadmn/ tcp_etherchannel.htm#yu528frokferg

2. Search on Troubleshooting IEEE 802.3ad.

For additional service updates regarding the use of EtherChannel:

1. Go to www.ibm.com/support

2. In the Search technical support box, enter the search term EtherChannel

3. Click Search

Hint: A useful command for troubleshooting, where device is the Link Aggregation device, is:

 entstat -d device

Swap space

It is highly suggested that a sufficiently large amount of swap space is configured. While the actual

configuration decisions should be made taking into account the memory requirements of other

applications, it is suggested to configure at least as much swap space as there is physical memory on a

given node.

Linux configuration and tuning considerations

Configuration and tuning considerations for the Linux nodes in your system include the use of the

updatedb utility, the vm.min_free_kbytes kernel tunable, and several other options that can improve

GPFS performance.

70 GPFS: Concepts, Planning, and Installation Guide

For the latest system configuration settings, see the GPFS FAQ at publib.boulder.ibm.com/infocenter/
clresctr/topic/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html

For more configuration and tuning considerations for Linux nodes, see the following topics:

1. “updatedb considerations”

2. “SUSE LINUX considerations”

3. “GPFS helper threads”

4. “Communications I/O”

5. “Disk I/O” on page 72

updatedb considerations

On some Linux distributions, for example, Red Hat EL 3.0, the system is configured by default to run the

file system indexing utility updatedb through the cron daemon on a periodic basis (usually daily). This

utility traverses the file hierarchy and generates a rather extensive amount of I/O load. For this reason, it is

configured by default to skip certain file system types and nonessential file systems. However, the default

configuration does not prevent updatedb from traversing GPFS file systems. In a cluster this results in

multiple instances of updatedb traversing the same GPFS file system simultaneously. This causes general

file system activity and lock contention in proportion to the number of nodes in the cluster. On smaller

clusters, this may result in a relatively short-lived spike of activity, while on larger clusters, depending on

the overall system throughput capability, the period of heavy load may last longer. Usually the file system

manager node will be the busiest, and GPFS would appear sluggish on all nodes. Re-configuring the

system to either make updatedb skip all GPFS file systems or only index GPFS files on one node in the

cluster is necessary to avoid this problem.

SUSE LINUX considerations

On the SUSE LINUX ES 9 distribution, it is recommended you adjust the vm.min_free_kbytes kernel

tunable. This tunable controls the amount of free memory that Linux kernel keeps available (i.e. not used

in any kernel caches). When vm.min_free_kbytes is set to its default value, on some configurations it is

possible to encounter memory exhaustion symptoms when free memory should in fact be available.

Setting vm.min_free_kbytes to a higher value (Linux sysctl utility could be used for this purpose), on the

order of magnitude of 5-6% of the total amount of physical memory, should help to avoid such a situation.

Also, please see the GPFS Redpapers:

v GPFS Sequential Input/Output Performance on IBM pSeries® 690 at www.redbooks.ibm.com/redpapers/
pdfs/redp3945.pdf

v Native GPFS Benchmarks in an Integrated p690/AIX and x335/Linux Environment at

www.redbooks.ibm.com/redpapers/pdfs/redp3962.pdf

GPFS helper threads

GPFS uses helper threads, such as prefetchThreads, worker1Threads to improve performance. Since

systems vary, it is suggested you simulate an expected workload in GPFS and examine available

performance indicators on your system. For instance some SCSI drivers publish statistics in the /proc/scsi

directory. If your disk driver statistics indicate that there are many queued requests it may mean you

should throttle back the helper threads in GPFS. Suggested starting points are:

mmchconfig prefetchThreads=18

mmchconfig worker1Threads=24

Communications I/O

To optimize the performance of GPFS and your network, it is suggested you:

v Enable Jumbo Frames if your switch supports it:

If GPFS is configured to operate over Gigabit Ethernet, set the MTU size for the communication adapter

to 9000.

Chapter 8. Configuring and tuning your system for GPFS 71

If GPFS is configured to operate over Myrinet, to enable the Jumbo Frames for Myrinet IP driver build

the GM driver with the --enable-new-features.

v Verify /proc/sys/net/ipv4/tcp_window_scaling is enabled. It should be by default.

v Tune the TCP window settings by adding these lines to the /etc/sysctl.conf file:

increase Linux TCP buffer limits

net.core.rmem_max = 8388608

net.core.wmem_max = 8388608

increase default and maximum Linux TCP buffer sizes

net.ipv4.tcp_rmem = 4096 262144 8388608

net.ipv4.tcp_wmem = 4096 262144 8388608

increase max backlog to avoid dropped packets

net.core.netdev_max_backlog=2500

After these changes are made to the /etc/sysctl.conf file, apply the changes to your system:

1. Issue the sysctl -p /etc/sysctl.conf command to set the kernel settings.

2. Issue the mmstartup -a command to restart GPFS

Disk I/O

To optimize disk I/O performance, you should consider theses options for NSD servers or other GPFS

nodes that are directly attached to a SAN over a Fibre Channel network:

1. The storage server cache settings can impact GPFS performance if not set correctly. Suggested

settings for the IBM TotalStorage® DS4500 include:

v read cache = enabled

v read ahead multiplier = 0

v write cache = disabled

v write cache mirroring = disabled

v cache block size = 16K

Note: Other storage server brands may have similar settings.

2. When the storage server disks are configured for RAID5, some configuration settings can affect GPFS

performance. These settings include:

v GPFS block size

v Maximum I/O size of host Fibre Channel (FC) host bus adapter (HBA) device driver

v Storage server RAID5 stripe size

Note: For optimal performance, GPFS block size should be a multiple of the maximum I/O size of the

FC HBA device driver. In addition, the maximum I/O size of the FC HBA device driver should be

a multiple of the RAID5 stripe size.

3. These suggestions may avoid the performance penalty of read-modify-write at the storage server for

GPFS writes. Examples of the suggested settings are:

v 8+P RAID5

– GPFS block size = 512K

– Storage Server RAID5 segment size = 64K (RAID5 stripe size=512K)

– Maximum IO size of FC HBA device driver = 512K

v 4+P RAID5

– GPFS block size = 256K

– Storage Server RAID5 segment size = 64K (RAID5 stripe size = 256K)

– Maximum IO size of FC HBA device driver = 256K

For the example settings using 8+P and 4+P RAID5, the RAID5 parity can be calculated from the data

written and will avoid reading from disk to calculate the RAID5 parity. The maximum IO size of the FC

72 GPFS: Concepts, Planning, and Installation Guide

HBA device driver can be verified using iostat or the Storage Server performance monitor. In some

cases, the device driver may need to be patched to increase the default maximum IO size.

4. The GPFS parameter maxMBpS can limit the maximum throughput of an NSD server or a single

GPFS node that is directly attached to the SAN with a FC HBA. Increase the maxMBpS from the

default value of 150 to 200 (200 MB/s). The maxMBpS parameter is changed by issuing the

mmchconfig command. After this change is made, restart GPFS on the nodes and test both read and

write performance of both a single node in addition to a large number of nodes.

AIX configuration and tuning considerations

Configuration and tuning considerations for the AIX nodes in your system include: I/O for communications

and GPFS disks, the switch pool, and the possible use of IBM Virtual Shared Disks or Oracle.

For the latest system configuration settings, see the GPFS FAQ at publib.boulder.ibm.com/infocenter/
clresctr/topic/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html.

For more information about configuration and tuning considerations for AIX nodes, see the following topics:

1. “Communications I/O”

2. “Disk I/O”

3. “Switch pool” on page 74

4. “eServer High Performance Switch” on page 74

5. “IBM Virtual Shared Disk” on page 74

6. “GPFS use with Oracle” on page 75

Communications I/O

There are two considerations for communications within your cluster:

1. For a cluster utilizing the HPS:

v Configure GPFS to communicate and pass administrative traffic over the LAN, not the switch.

v Attach and configure AIX nodes designated as virtual shared disk servers, to use the switch.

2. The ipqmaxlen network option should be considered when configuring for GPFS. The ipqmaxlen

parameter controls the number of incoming packets that can exist on the IP interrupt queue. Since

both GPFS and IBM Virtual Shared Disk use IP, the default of 100 is often insufficient. The suggested

setting is 512. To set the value to 512 after the next reboot, issue the command:

no -r -o ipqmaxlen=512

This value will persist throughout subsequent reboots. For detailed information on the ipqmaxlen

parameter, see the AIX 5L Performance Management Guide for AIX V5.3 at http://
publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp.

Disk I/O

The disk I/O option to consider when configuring GPFS and using SSA RAID:

max_coalesce

The max_coalesce parameter of the SSA RAID device driver allows the device driver to coalesce

requests which have been broken up to satisfy LVM requirements. This parameter can be critical

when using RAID and is required for effective performance of RAID writes. The suggested setting

is 0x40000 for RAID-54+P configurations.

v To view:

lsattr -E -l hdiskX -a max_coalesce

v To set:

chdev -l hdiskX -a max_coalesce=0x40000

Chapter 8. Configuring and tuning your system for GPFS 73

For further information on the max_coalesce parameter see the AIX 5L Technical Reference: Kernel and

Subsystems, Volume 2 for AIX V5.3 at http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp.

Switch pool

If your hardware configuration consists of the eServer HPS, there are two communication subsystem

parameters which must be considered when tuning for GPFS. They are rpoolsize and spoolsize. For

optimal system performance, you must allocate sufficient memory for use by these switch pools.

v Switch receive pool, rpoolsize, is the pool of memory which is allocated for buffers being received from

the switch. Shortages of these buffers will result in dropped packets and retries at higher protocol levels.

v Switch send pool, spoolsize, is the pool of memory which is used for all switch output. Shortages of

these buffers will result in a delay of I/O operations. On virtual shared disk servers, shortages of these

buffers may result in idle disks because buddy buffers can not be freed.

For the HPS, the default value for rpoolsize and spoolsize is 67108864. The maximum allowed value for

both parameters is 134217728. When setting the rpoolsize and spoolsize parameters for a individual

node, the value should scale with the number of HPS links.

v For each link on a node you need to allocate 16 Megabytes of rpoolsize and spoolsize.

v For a 2 link system, the rpoolsize and spoolsize values should be 33554432.

v For an 8 link node the values should be set to 134217728.

v For other configurations the value should be proportional.

The suggested setting on virtual shared disk servers is the default value. Under some loads, lesser values

may be sufficient on application nodes without disks attached to them.

v To verify the value of spoolsize and rpoolsize:

lsattr -E -l sni0

v To change the value:

chgsni sn0 -a rpoolsize=33554432 -a spoolsize 33554432

For a complete listing of the required AIX file sets and for information on network tuning and Technical

Large Page Support configuration, refer to the Switch Network Interface for eServer High Performance

Switch Guide and Reference, (SC23-4869):

v For AIX V5.3, go to http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp.

eServer High Performance Switch

If your system consists of the eServer High Performance Switch, it is suggested that you configure GPFS

over the ml0 IP network interface.

IBM Virtual Shared Disk

There are three IBM Virtual Shared Disk configuration settings for the efficient operation of GPFS:

1. The buddy buffer is pinned kernel memory. The virtual shared disk server node uses the buddy buffer

to temporarily store data for I/O operations originating at a client node. The data in a buddy buffer is

purged immediately after the I/O operation completes. The values associated with the buddy buffer

are:

v Minimum buddy buffer size allocated to a single request

v Maximum buddy buffer size allocated to a single request

v Total number of maximum-size buddy buffers that the system will attempt to dynamically allocate

Suggested values (unless your system is memory-constrained and you want to restrict the amount of

buddy buffer space) are:

v Minimum buddy buffer size: 4096 (4 KB)

v Maximum buddy buffer size: 262144 (256 KB)

74 GPFS: Concepts, Planning, and Installation Guide

If your application uses the fastpath option of asynchronous I/O, the maximum buddy buffer size

must be greater than or equal to 128 KB. Otherwise, you will receive EMSGSIZE Message too

long errors.

v Total number of maximum-size buffers:

– 2000 for a virtual shared disk server node

– One for a virtual shared disk client-only node

You can either set these values using the vsdnode command, or update the values using the

updatevsdnode command.

When the device driver is configured, the total buddy buffer space is not pinned; instead,

approximately one-quarter of the total space requested is pinned when the device driver is configured.

This initial amount of spaced pinned is limited to a maximum of 64 MB for a 32-bit kernel, or 128 MB

for a 64-bit kernel. After configuration, the device driver attempts to dynamically expand and contract

additional buddy buffer space up to the maximum specified, or until AIX can no longer satisfy the

memory request. If a buddy buffer cannot be obtained, then the request is queued at the virtual shared

disk server until a buddy buffer is available.

2. The IP_max_msg_size parameter controls the size of the packets that the IBM Virtual Shared Disk

will send between the client and the server. Larger message sizes will result in fewer packets to

transfer the same amount of data. The suggested setting is 61440 on all nodes.

Note: For virtual shared disks in a system utilizing the HPS, see the Reliable Scalable Cluster

Technology: Managing Shared Disks manual for information on buddy buffers. This document is

located at http://publib.boulder.ibm.com/infocenter/clresctr/topic/com.ibm.cluster.rsct.doc/
rsctbooks.html.

GPFS use with Oracle

When utilizing GPFS with Oracle, configuration and tuning considerations include:

v When setting up your LUNS it is important to:

1. Create the logical volumes such that they map one to one with a volume group and a volume group

be one to one with a LUN which is a single RAID device.

2. Not stripe logical volumes across multiple RAIDs for I/O parallelism when using raw logical volumes

because:

– GPFS puts each block of a file on different LUNs spread across all LUNs

– Logical volume striping makes removing a bad RAID more difficult

v For file systems holding large Oracle databases, set the GPFS file system block size through the

mmcrfs command using the -B option, to a large value:

– 512 KB is generally suggested.

– 256 KB is suggested if there is activity other than Oracle using the file system and many small files

exist which are not in the database.

– 1 MB is suggested for file systems 100 TB or larger.

The large block size makes the allocation of space for the databases manageable and has no affect on

performance when Oracle is using the Asynchronous I/O (AIO) and Direct I/O (DIO) features of AIX.

v Set the GPFS worker threads through the mmchconfig - prefetchThreads command to allow the

maximum parallelism of the Oracle AIO threads:

– On a 64-bit AIX kernel, the setting can be as large as 548.

The GPFS prefetch threads must be adjusted accordingly through the mmchconfig -

prefetchThreads command as the sum of those two classes of threads must be 550 or less.

– On a 32-bit kernel, the setting can be as large as 162.

The GPFS prefetch threads must be adjusted accordingly through the mmchconfig -

prefetchThreads command as the sum of those two classes of threads must be 164 or less.

Chapter 8. Configuring and tuning your system for GPFS 75

– When requiring GPFS sequential I/O, set the prefetch threads between 50 and 100 (the default is

64), and set the worker threads to have the remainder.

Note: These changes through the mmchconfig command take effect upon restart of the GPFS

daemon.

v The number of AIX AIO kprocs to create should be approximately the same as the GPFS

worker1Threads setting.

v The AIX AIO maxservers setting is the number of kprocs PER CPU. It is suggested to set is slightly

larger than worker1Threads divided by the number of CPUs. For example if worker1Threads is set to

500 on a 32-way SMP, set maxservers to 20.

v Set the Oracle database block size equal to the LUN segment size or a multiple of the LUN pdisk

segment size.

v Set the Oracle read-ahead value to prefetch one or two full GPFS blocks. For example, if your GPFS

block size is 512 KB, set the Oracle blocks to either 32 or 64 16 KB blocks.

v Do not use the dio option on the mount command as this forces DIO when accessing all files. Oracle

automatically uses DIO to open database files on GPFS.

v When running Oracle RAC 10g, it is suggested you increase the value for

OPROCD_DEFAULT_MARGIN to at least 500 to avoid possible random reboots of nodes.

In the control script for the Oracle CSS daemon, located in /etc/init.cssd the value for

OPROCD_DEFAULT_MARGIN is set to 500 (milliseconds) on all UNIX derivatives except for AIX. For

AIX this value is set to 100. From a GPFS perspective, even 500 milliseconds maybe too low in

situations where node failover may take up to a minute or two to resolve. However, if during node failure

the surviving node is already doing direct IO to the oprocd control file, it should have the necessary

tokens and indirect block cached and should therefore not have to wait during failover.

76 GPFS: Concepts, Planning, and Installation Guide

Chapter 9. Steps to permanently uninstall GPFS

GPFS maintains a number of files that contain configuration and file system related data. Since these files

are critical for the proper functioning of GPFS and must be preserved across releases, they are not

automatically removed when you uninstall GPFS.

Follow these steps if you do not intend to use GPFS on any of the nodes in your cluster and you want to

remove all traces of GPFS:

Attention: After following these steps and manually removing the configuration and file system related

information, you will permanently lose access to all of your current GPFS data.

1. Unmount all GPFS file systems on all nodes by issuing the mmumount all -a command.

2. Issue the mmdelfs command for each file system in the cluster to remove GPFS file systems.

3. Issue the mmdelnsd command for each NSD in the cluster to remove the NSD volume ID written on

sector 2.

If the NSD volume ID is not removed and the disk is again used with GPFS at a later time, you will

receive an error message when issuing the mmcrnsd command. See NSD creation fails with a

message referring to an existing NSD in the GPFS: Problem Determination Guide.

4. Issue the mmshutdown -a command to shutdown GPFS on all nodes.

5. Uninstall GPFS from each node:

v For your Linux nodes, run the de-install to remove GPFS for the correct version of the RPM for your

hardware platform and Linux distribution. For example:

rpm -e gpfs.gpl

rpm -e gpfs.msg.en_us

rpm -e gpfs.base

rpm -e gpfs.docs

v For your AIX nodes:

installp -u gpfs

v For your Windows nodes, follow these steps:

a. Click Add or Remove Programs in the Control Panel.

b. Click IBM General Parallel File System.

c. Click Remove, which will step you through the uninstall process. A reboot will be required.

6. Remove the /var/mmfs and /usr/lpp/mmfs directories.

7. Remove all files that start with mm from the /var/adm/ras directory.

8. Remove /tmp/mmfs directory and its content, if present.

© Copyright IBM Corp. 1998, 2008 77

|
|
|
|

|

|

|

|

78 GPFS: Concepts, Planning, and Installation Guide

Chapter 10. GPFS architecture

Interaction between nodes at the file system level is limited to the locks and control flows required to

maintain data and metadata integrity in the parallel environment.

A discussion of GPFS architecture includes:

v “Special management functions”

v “Use of disk storage and file structure within a GPFS file system” on page 81

v “GPFS and memory” on page 83

v “GPFS and network communication” on page 85

v “Application and user interaction with GPFS” on page 87

v “GPFS command processing” on page 91

v “NSD disk discovery” on page 92

v “Failure recovery processing” on page 92

v “Cluster configuration data files” on page 93

v “GPFS backup data” on page 94

Special management functions

In general, GPFS performs the same functions on all nodes. It handles application requests on the node

where the application exists. This provides maximum affinity of the data to the application.

There are three cases where one node provides a more global function affecting the operation of multiple

nodes. These are nodes acting as:

1. “The GPFS cluster manager”

2. “The file system manager” on page 80

3. “The metanode” on page 81

The GPFS cluster manager

There is one GPFS cluster manager per cluster. The cluster manager is chosen through an election held

among the set of quorum nodes designated for the cluster.

Note: See “Quorum” on page 15 for more information.
The cluster manager performs the following tasks:

v Monitors disk leases

v Detects failures and drives recovery from node failure within the cluster.

The cluster manager determines whether or not a quorum of nodes exists to allow the GPFS daemon to

start and for file system usage to continue.

v Distributes certain configuration changes that must be known to nodes in remote clusters.

v Selects the file system manager node.

The cluster manager prevents multiple nodes from assuming the role of file system manager, thereby

avoiding data corruption, as the token management function resides on the file system manager node

and possibly other nodes. See Large system considerations in General Parallel File System: Advanced

Administration Guide.

v Handles UID mapping requests from remote cluster nodes.

To identify the cluster manager, issue the mmlsmgr -c command.

To change the cluster manager, issue the mmchmgr -c command.

© Copyright IBM Corp. 1998, 2008 79

The file system manager

There is one file system manager per file system, which handles all of the nodes using the file system.

The services provided by the file system manager include:

1. File system configuration

Processes changes to the state or description of the file system:

v Adding disks

v Changing disk availability

v Repairing the file system

Mount and unmount processing is performed on both the file system manager and the node requesting

the service.

2. Management of disk space allocation

Controls which regions of disks are allocated to each node, allowing effective parallel allocation of

space.

3. Token management

The file system manager node may also perform the duties of the token manager server. If you have

explicitly designated some of the nodes in your cluster as file system manager nodes, then the token

server load will be distributed among all of the designated manager nodes. For additional information,

refer to Large system considerations in General Parallel File System: Advanced Administration Guide.

The token management server coordinates access to files on shared disks by granting tokens that

convey the right to read or write the data or metadata of a file. This service ensures the consistency of

the file system data and metadata when different nodes access the same file. The status of each token

is held in two places:

a. On the token management server

b. On the token management client holding the token

The first time a node accesses a file it must send a request to the token management server to obtain

a corresponding read or write token. After having been granted the token, a node may continue to

read or write to the same file without requiring additional interaction with the token management server.

This continues until an application on another node attempts to read or write to the same region in the

file.

The normal flow for a token is:

v A message to the token management server.

The token management server then either returns a granted token or a list of the nodes that are

holding conflicting tokens.

v The token management function at the requesting node then has the responsibility to communicate

with all nodes holding a conflicting token and get them to relinquish the token.

This relieves the token server of having to deal with all nodes holding conflicting tokens. In order for

a node to relinquish a token, the daemon must give it up. First, the daemon must release any locks

that are held using this token. This may involve waiting for I/O to complete.

4. Quota management

In a quota-enabled file system, the file system manager node automatically assumes quota

management responsibilities whenever the GPFS file system is mounted. Quota management involves:

v Allocating disk blocks to nodes that are writing to the file system

v Comparing the allocated space to the quota limits at regular intervals

Note: To reduce the number of space requests from nodes writing to the file system, the quota

manager allocates more disk blocks than requested (see Activate quotas). That allows nodes to

write to the file system without having to go to the quota manager and check quota limits each

time they write to the file system.

80 GPFS: Concepts, Planning, and Installation Guide

The file system manager is selected by the cluster manager. If a file system manager should fail for any

reason, a new file system manager is selected by the cluster manager and all functions continue without

disruption, except for the time required to accomplish the takeover.

Depending on the application workload, the memory and CPU requirements for the services provided by

the file system manager may make it undesirable to run a resource intensive application on the same

node as the file system manager. GPFS allows you to control the pool of nodes from which the file system

manager is chosen through:

v The mmcrcluster command, when creating your cluster

v The mmaddnode command, when adding nodes to your cluster

v The mmchnode command, to change a node’s designation at any time

These preferences are honored except in certain failure situations where multiple failures occur (see

Multiple file system manager failures in the GPFS: Problem Determination Guide). You may list which node

is currently assigned as the file system manager by issuing the mmlsmgr command or change which

node has been assigned to this task through the mmchmgr command.

The metanode

There is one metanode per open file. The metanode is responsible for maintaining file metadata integrity.

In almost all cases, the node that has had the file open for the longest continuous period of time is the

metanode. All nodes accessing a file can read and write data directly, but updates to metadata are written

only by the metanode. The metanode for each file is independent of that for any other file and can move

to any node to meet application requirements.

Use of disk storage and file structure within a GPFS file system

A file system (or stripe group) consists of a set of disks that are used to store: metadata, quota files,

GPFS recovery logs, and user data.

This set of disks is listed in a file system descriptor, which is at a fixed position on each of the disks in the

stripe group. In addition, the file system descriptor contains the file system specification and information

about the state of the file system.

Within each file system, files are written to disk as in traditional UNIX file systems, using inodes, indirect

blocks, and data blocks. Inodes and indirect blocks are considered metadata, as distinguished from data,

or actual file content. You can control which disks GPFS uses for storing metadata when you create disk

descriptors at file system creation time when issuing mmcrfs or at a later time by issuing mmchdisk.

Each file has an inode containing information such as file size and time of last modification. The inodes of

small files also contain the addresses of all disk blocks that comprise the file data. A large file can use too

many data blocks for an inode to directly address. In such a case, the inode points instead to one or more

levels of indirect blocks that are deep enough to hold all of the data block addresses. This is the

indirection level of the file.

A file starts out with direct pointers to data blocks in the inodes (a zero level of indirection). As the file

increases in size to the point where the inode cannot hold enough direct pointers, the indirection level is

increased by adding an indirect block and moving the direct pointers there. Subsequent levels of indirect

blocks are added as the file grows. This allows file sizes to grow up to the file system size.

Chapter 10. GPFS architecture 81

Note:

1. The maximum number of mounted file systems within a GPFS cluster is 256.

2. See the GPFS FAQ at publib.boulder.ibm.com/infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/
gpfs_faqs/gpfsclustersfaq.html for the latest supported file system size.

3. The maximum number of files within a file system cannot exceed the architectural limit of

2,147,484,647.

Using the file system descriptor to find all of the disks that make up the file system’s stripe group, and

their size and order, it is possible to address any block in the file system. In particular, it is possible to find

the first inode, which describes the inode file, and a small number of inodes that are the core of the rest of

the file system. The inode file is a collection of fixed length records that represent a single file, directory, or

link. The unit of locking is the single inode because the inode size must be a multiple of the sector size

(the inode size is internally controlled by GPFS). Specifically, there are fixed inodes within the inode file for

the:

v Root directory of the file system

v Block allocation map, which is is a collection of bits that represent the availability of disk space within

the disks of the file system. One unit in the allocation map represents a subblock or 1/32 of the block

size of the file system. The allocation map is broken into regions that reside on disk sector boundaries.

The number of regions is set at file system creation time by the parameter that specifies how many

nodes will access this file system. The regions are separately locked and, as a result, different nodes

can be allocating or de-allocating space represented by different regions independently and

concurrently.

v Inode allocation map, which represents the availability of inodes within the inode file. The Inode

allocation map is located in the inode allocation file, and represents all the files, directories, and links

that can be created. The mmchfs command can be used to change the maximum number of files that

can be created in the file system.

The data contents of each of these files are taken from the data space on the disks. These files are

considered metadata and are allocated only on disks where metadata is allowed.

Figure 13. GPFS files have a typical UNIX structure

82 GPFS: Concepts, Planning, and Installation Guide

Quota files

For file systems with quotas enabled, quota files are created at file system creation time. There are three

quota files for a file system:

v user.quota for users

v group.quota for groups

v fileset.quota for filesets

For every user who works within the file system, the user.quota file contains a record of limits and current

usage within the file system for the individual user. If default quota limits for new users of a file system

have been established, this file also contains a record for that value.

For every group whose users work within the file system, the group.quota file contains a record of

common limits and the current usage within the file system of all the users in the group. If default quota

limits for new groups of a file system have been established, this file also contains a record for that value.

For every fileset, the fileset.quota file contains a record of limits and current usage within the fileset. If

default quota limits for filesets have been established, this file also contains a record for that value. The

quota limit on blocks and inodes in a fileset are independent of the limits for specific users or groups of

users. During allocation, the corresponding the limits for users, groups, and filesets are checked and the

lowest threshold is applied.

Quota files are found through a pointer in the file system descriptor. Only the file system manager has

access to the quota files. For backup purposes, quota files are also accessible as regular files in the root

directory of the file system.

GPFS recovery logs

GPFS recovery logs are created at file system creation. Additional recovery logs may be created if

needed. Recovery logs are always replicated and are found through a pointer in the file system descriptor.

The file system manager assigns a recovery log to each node accessing the file system.

GPFS maintains the atomicity of the on-disk structures of a file through a combination of rigid sequencing

of operations and logging. The data structures maintained are the inode, the indirect block, the allocation

map, and the data blocks. Data blocks are written to disk before any control structure that references the

data is written to disk. This ensures that the previous contents of a data block can never be seen in a new

file. Allocation blocks, inodes, and indirect blocks are written and logged in such a way that there will never

be a pointer to a block marked unallocated that is not recoverable from a log.

There are certain failure cases where blocks are marked allocated but not part of a file, and this can be

recovered by running mmfsck online or offline. GPFS always replicates its log. There are two copies of

the log for each executing node. Log recovery is run:

1. As part of the recovery of a node failure affecting the objects that the failed node might have locked.

2. As part of a mount after the file system has been unmounted everywhere.

Note: Any space that is not used by metadata, quota files, and recovery logs is used for user data and

directories and allocated from the block allocation map as needed.

GPFS and memory

GPFS uses three areas of memory: memory allocated from the kernel heap, memory allocated within the

daemon segment, and shared segments accessed from both the daemon and the kernel.

Chapter 10. GPFS architecture 83

Memory allocated from the kernel heap

GPFS uses kernel memory for control structures such as vnodes and related structures that

establish the necessary relationship with the operating system.

Memory allocated within the daemon segment

 GPFS uses daemon segment memory for file system manager functions. Because of that, the file

system manager node requires more daemon memory since token states for the entire file system

are initially stored there. File system manager functions requiring daemon memory include:

v Structures that persist for the execution of a command

v Structures that persist for I/O operations

v States related to other nodes

Note: Other nodes may assume token management responsibilities. Refer to Large system

considerations in General Parallel File System: Advanced Administration Guide.

Shared segments accessed from both the daemon and the kernel

Shared segments consist of both pinned and unpinned memory that are allocated at daemon

startup. The initial values are the system defaults. However, you can change these values later

using the mmchconfig command. See “Cluster configuration file” on page 23.

 Pinned memory is labeled, pagepool. In a non-pinned area of the shared segment, GPFS keeps

information about open and recently opened files. This information is held in two forms:

1. A full inode cache

2. A stat cache

Pinned and non-pinned memory

GPFS uses pinned memory (also called pagepool memory) for storing file data and metadata in support

of I/O operations. With some access patterns, increasing the amount of pagepool memory may increase

I/O performance for file systems if they have these operating characteristics:

v Frequent writes that can be overlapped with application execution

v Reuse of files and sequential reads of a size such that prefetch will benefit the application

Non-pinned memory

The inode cache contains copies of inodes for open files and for some recently used files that are no

longer open. The maxFilesToCache parameter controls the number of inodes cached by GPFS. However,

the number of inodes for recently used files is constrained by how much the maxFilesToCache parameter

exceeds the number of currently open files.

Note: The number of open files can exceed the value defined by the maxFilesToCache parameter.

The stat cache contains enough information to respond to inquiries about the file and open it, but not

enough information to read from it or write to it. There is sufficient data from the inode to respond to a

stat() call (the system call under commands such as ls -l). A stat cache entry consumes significantly less

memory than a full inode. The default value stat cache is four times the maxFilesToCache parameter.

This value may be changed through the maxStatCache parameter on the mmchconfig command. Stat

cache entries are kept for:

1. Recently accessed files

2. Directories recently accessed by a number of stat() calls

Note:

1. GPFS will prefetch data for stat cache entries if a pattern of use indicates this will be

productive. Such a pattern might be a number of ls -l commands issued for a large directory.

84 GPFS: Concepts, Planning, and Installation Guide

2. Each entry in the inode cache and the stat cache requires appropriate tokens:

a. To ensure the cached information remains correct

b. For the storage of tokens on the file system manager node

3. Depending on the usage pattern, system performance may degrade when an information

update requires revoking a token. This happens when two or more nodes share the same

information and the most recent information is moved to a different location. When the current

node needs to access the updated information, the token manager must revoke the token from

the current node before that node can access the information in the new location.

GPFS and network communication

Within the GPFS cluster, you can specify different networks for GPFS daemon communication and for

GPFS administration command usage.

You make these selections using the mmaddnode, mmchnode, and mmcrcluster commands. In these

commands, the node descriptor allows you to specify separate node interfaces for those functions on each

node. The correct operation of GPFS is directly dependent upon these selections:

v “GPFS daemon communication”

v “GPFS administration commands” on page 86

GPFS daemon communication

In a cluster environment, the GPFS daemon depends on the correct operation of TCP/IP. These

dependencies exist because:

v The communication path between nodes must be built at the first attempt to communicate.

v Each node in the cluster is required to communicate with the cluster manager and the file system

manager during startup and mount processing.

v Once a connection is established, it must remain active until the GPFS daemon is shut down on the

nodes.

Note: Establishing other communication paths depends upon application usage among nodes.

The daemon also uses sockets to communicate with other instances of the file system on other nodes.

Specifically, the daemon on each node communicates with the file system manager for allocation of logs,

allocation segments, and quotas, as well as for various recovery and configuration flows. GPFS requires

an active internode communications path between all nodes in a cluster for locking, metadata coordination,

administration commands, and other internal functions. The existence of this path is necessary for the

correct operation of GPFS. The instance of the GPFS daemon on a node will go down if it senses that this

communication is not available to it. If communication is not available to another node, one of the two

nodes will exit GPFS.

Using public and private IP addresses for GPFS nodes

GPFS permits the system administrator to set up a cluster such that both public and private IP addresses

are in use. For example, if a cluster has an internal network connecting some of its nodes, it is

advantageous to use private IP addresses to communicate on this network, and public IP addresses to

communicate to resources outside of this network. Public IP addresses are those that can be used to

access the node from any other location for which a connection exists. Private IP addresses may be used

only for communications between nodes directly connected to each other with a communications adapter.

Private IP addresses are assigned to each node at hardware setup time, and must be in a specific

address range (IP addresses on a 10.0.0.0, 172.16.0.0, or 192.168.0.0 subnet). For more information on

private IP addresses refer to RFC 1597 - Address Allocation for Private Internets at http://www.ip-doc.com/
rfc/rfc1597.

Chapter 10. GPFS architecture 85

The subnets operand on the mmchconfig command specifies an ordered list of subnets available to

GPFS for private TCP/IP communications. Each subnet listed may have a list of cluster names (allowing

shell-style wild cards) that specifies other GPFS clusters that have direct access to the same subnet.

When the GPFS daemon starts on a node, it obtains a list of its own IP addresses and associated subnet

masks from its local IP configuration. For each IP address, GPFS checks whether that address is on one

of the subnets specified on the subnets configuration parameter. It records the list of its matching IP

addresses and subnet masks, and then listens for connections on any of these addresses. If any IP

address for the node (specified when the cluster was created or when the node was added to the cluster),

is not specified with the subnets configuration parameter, GPFS automatically adds it to the end of the

node’s IP address list.

Therefore, when using public IP addresses for a node, there is no need to explicitly list the public IP

subnet with the subnets configuration parameter. For example, the normal way to configure a system

would be to use host names that resolve to the external Ethernet IP address in the mmcrcluster

command, and then, if the system administrator wants GPFS to use the High Performance Switch within

the cluster, add one subnets configuration parameter for the HPS subnet. It is acceptable to add two

subnets configuration parameters, one for the HPS and one for the external Ethernet, making sure that

they are in that order. In this case it does not matter which of each node’s two addresses was specified

when the cluster was created or when the node was added to the cluster. For example, to add remote

access to an existing cluster that was using only switch addresses, it is sufficient to add two subnets

configuration parameters.

When a node joins a cluster (its own cluster on startup, or another cluster when mounting a file system

owned by another cluster), the node sends its list of IP addresses (ordered according to the order of

subnets configuration parameters) to the cluster manager node, which forwards the list to all other nodes

as part of the join protocol. No other additional information needs to be propagated.

When a node attempts to establish a connection to another node, GPFS determines the destination IP

address to use according to this procedure:

1. For each of its own IP addresses, it searches the other node’s list of IP addresses for an address that

is on the same subnet.

v For normal public IP addresses this is done by comparing IP address values ANDed with the node’s

subnet mask for its IP address.

v For private IP addresses GPFS assumes that two IP addresses are on the same subnet only if the

two nodes are within the same cluster, or if the other node is in one of the clusters explicitly listed in

the subnets configuration parameter.

2. If the two nodes have more than one IP address pair on a common subnet, GPFS uses the first one

found according to the order of subnets specified in the initiating node’s configuration parameters.

3. If there are no two IP addresses on the same subnet, GPFS uses the last IP address in each node’s

IP address list. In other words, the last subnet specified in the subnets configuration parameter is

assumed to be on a network that is accessible from the outside.

For more information and an example, see Using remote access with public and private IP addresses in

General Parallel File System: Advanced Administration Guide.

GPFS administration commands

Socket communications are used to process GPFS administration commands. Depending on the nature of

the command, GPFS may process commands either on the node issuing the command or on the file

system manager. The actual command processor merely assembles the input parameters and sends them

along to the daemon on the local node using a socket.

86 GPFS: Concepts, Planning, and Installation Guide

Some GPFS commands permit you to specify a separate administrative network name. You make this

specification using the AdminNodeName field of the node descriptor. For additional information, refer to

the GPFS: Administration and Programming Reference for descriptions of these commands:

v mmaddnode

v mmchnode

v mmcrcluster

If the command changes the state of a file system or its configuration, the command is processed at the

file system manager. The results of the change are sent to all nodes and the status of the command

processing is returned to the node, and eventually, to the process issuing the command. For example, a

command to add a disk to a file system originates on a user process and:

1. Is sent to the daemon and validated.

2. If acceptable, it is forwarded to the file system manager, which updates the file system descriptors.

3. All nodes that have this file system are notified of the need to refresh their cached copies of the file

system descriptor.

4. The return code is forwarded to the originating daemon and then to the originating user process.

Be aware that this chain of communication may allow faults related to the processing of a command to

occur on nodes other than the node on which the command was issued.

Application and user interaction with GPFS

There are four ways to interact with a GPFS file system, which are outlined in this topic.

You can interact with a GPFS file system using:

v Operating system commands, which are run at GPFS daemon initialization time or at file system mount

time (see “Operating system commands”)

v Operating system calls such as open(), from an application requiring access to a file controlled by

GPFS (see “Operating system calls” on page 88)

v GPFS commands described in the Commands section of the GPFS: Administration and Programming

Reference (see also“GPFS command processing” on page 91)

v GPFS programming interfaces described in the Programming interfaces section of the GPFS:

Administration and Programming Reference and the GPFS: Data Management API Guide

Operating system commands

Operating system commands operate on GPFS data during:

v The initialization of the GPFS daemon

v The mounting of a file system

Initialization of the GPFS daemon

GPFS initialization can be done automatically as part of the node startup sequence, or manually using the

mmstartup command to start the daemon. The daemon startup process loads the necessary kernel

extensions, if they have not been previously loaded by an earlier instance of the daemon subsequent to

the current boot of this node. The initialization sequence then waits for the cluster manager to declare that

a quorum exists. When quorum is achieved, the cluster manager changes the state of the group from

initializing to active. This transition is evident in a message to the GPFS console file (/var/adm/ras/
mmfs.log.latest). When this state changes from initializing to active, the daemon is ready to accept mount

requests. The message mmfsd ready will appear in the GPFS console file.

Chapter 10. GPFS architecture 87

The mounting of a file system

GPFS file systems are mounted using the operating system’s mount command, or the GPFS mmmount

command. GPFS mount processing builds the structures that serve as the path to the data, and is

performed on both the node requesting the mount and the file system manager node. If there is no file

system manager, a call is made to the cluster manager, which appoints one. The file system manager will

ensure that the file system is ready to be mounted. This includes checking that there are no conflicting

utilities being run by the mmfsck or mmcheckquota commands, for example, and running any necessary

log processing to ensure that metadata on the file system is consistent.

On the local node the control structures required for a mounted file system are initialized and the token

management function domains are created. In addition, paths to each of the disks that make up the file

system are opened. Part of mount processing involves unfencing the disks, which may be necessary if this

node had previously failed. This is done automatically without user intervention. If insufficient disks are up,

the mount will fail. That is, in a replicated system if two disks are down in different failure groups, the

mount will fail. In a non-replicated system, one disk down will cause the mount to fail.

Operating system calls

The most common interface is through normal file system calls to the operating system, which are relayed

to GPFS if data in a GPFS file system is involved. This uses GPFS code in a kernel extension, which

attempts to satisfy the application request using data already in memory. If this can be accomplished,

control is returned to the application through the operating system interface. If the request requires

resources that are not available at the time, the request is transferred for execution by a daemon thread.

The daemon threads wait for work in a system call in the kernel, and are scheduled as necessary.

Services available at the daemon level are the acquisition of tokens and disk I/O.

Operating system calls operate on GPFS data during:

v The opening of a file

v The reading of data

v The writing of data

The open of a GPFS file

The open of a GPFS file involves the application making a call to the operating system specifying the

name of the file. Processing of an open involves two stages:

1. The directory processing required to identify the file specified by the application.

2. The building of the required data structures based on the inode.

The kernel extension code will process the directory search for those directories that reside in GPFS (part

of the path to the file may be directories in other physical file systems). If the required information is not in

memory, the daemon will be called to acquire the necessary tokens for the directory or part of the directory

needed to resolve the lookup. It will also read the directory entry into memory.

The lookup process occurs one directory at a time in response to calls from the operating system. In the

final stage of open, the inode for the file is read from disk and connected to the operating system vnode

structure. This requires acquiring locks on the inode, as well as a lock that indicates the presence to the

metanode:

v If no other node has this file open, this node becomes the metanode.

v If another node has a previous open, then that node is the metanode and this node will interface with

the metanode for certain parallel write situations.

v If the open involves creation of a new file, the appropriate locks are obtained on the parent directory

and the inode allocation file block. The directory entry is created, an inode is selected and initialized and

then open processing is completed.

88 GPFS: Concepts, Planning, and Installation Guide

The reading of data

The GPFS read function is invoked in response to a read system call and a call through the operating

system vnode interface to GPFS. read processing falls into three levels of complexity based on system

activity and status:

1. Buffer available in memory

2. Tokens available locally but data must be read

3. Data and tokens must be acquired

At the completion of a read, a determination of the need for prefetch is made. GPFS computes a desired

read-ahead for each open file based on the performance of the disks and the rate at which the application

is reading data. If additional prefetch is needed, a message is sent to the daemon that will process it

asynchronously with the completion of the current read.

Buffer and locks available in memory:

The simplest read operation occurs when the data is already available in memory, either because it has

been pre-fetched or because it has been read recently by another read call. In either case, the buffer is

locally locked and the data is copied to the application data area. The lock is released when the copy is

complete. Note that no token communication is required because possession of the buffer implies that we

at least have a read token that includes the buffer. After the copying, prefetch is initiated if appropriate.

Tokens available locally but data must be read:

The second, more complex, type of read operation is necessary when the data is not in memory. This

occurs under three conditions:

1. The token has been acquired on a previous read that found no contention.

2. The buffer has been stolen for other uses.

3. On some random read operations.

In the first of a series of random reads the token will not be available locally, but in the second read it

might be available.

In such situations, the buffer is not found and must be read. No token activity has occurred because the

node has a sufficiently strong token to lock the required region of the file locally. A message is sent to the

daemon, which is handled on one of the waiting daemon threads. The daemon allocates a buffer, locks the

file range that is required so the token cannot be stolen for the duration of the I/O, and initiates the I/O to

the device holding the data. The originating thread waits for this to complete and is posted by the daemon

upon completion.

Data and tokens must be acquired:

The third, and most complex read operation requires that tokens as well as data be acquired on the

application node. The kernel code determines that the data is not available locally and sends the message

to the daemon waiting after posting the message. The daemon thread determines that it does not have the

required tokens to perform the operation. In that case, a token acquire request is sent to the token

management server. The requested token specifies a required length of that range of the file, which is

needed for this buffer. If the file is being accessed sequentially, a desired range of data, starting at this

point of this read and extending to the end of the file, is specified. In the event that no conflicts exist, the

desired range will be granted, eliminating the need for token calls on subsequent reads. After the minimum

token needed is acquired, the flow proceeds as in step 3 on page 80 (token management).

The writing of data

write processing is initiated by a system call to the operating system, which calls GPFS when the write

involves data in a GPFS file system.

Chapter 10. GPFS architecture 89

GPFS moves data from a user buffer into a file system buffer synchronously with the application write call,

but defers the actual write to disk. This technique allows better scheduling of the disk and improved

performance. The file system buffers come from the memory allocated based on the pagepool parameter

in the mmchconfig command. Increasing this value may allow more writes to be deferred, which improves

performance in certain workloads.

A block of data is scheduled to be written to a disk when:

v The application has specified synchronous write.

v The system needs the storage.

v A token has been revoked.

v The last byte of a block of a file being written sequentially is written.

v A sync is done.

Until one of these occurs, the data remains in GPFS memory.

write processing falls into three levels of complexity based on system activity and status:

1. Buffer available in memory

2. Tokens available locally but data must be read

3. Data and tokens must be acquired

Metadata changes are flushed under a subset of the same conditions. They can be written either directly,

if this node is the metanode, or through the metanode, which merges changes from multiple nodes. This

last case occurs most frequently if processes on multiple nodes are creating new data blocks in the same

region of the file.

Buffer available in memory:

The simplest path involves a case where a buffer already exists for this block of the file but may not have

a strong enough token. This occurs if a previous write call accessed the block and it is still resident in

memory. The write token already exists from the prior call. In this case, the data is copied from the

application buffer to the GPFS buffer. If this is a sequential write and the last byte has been written, an

asynchronous message is sent to the daemon to schedule the buffer for writing to disk. This operation

occurs on the daemon thread overlapped with the execution of the application.

Token available locally but data must be read:

There are two situations in which the token may exist but the buffer does not:

1. The buffer has been recently stolen to satisfy other needs for buffer space.

2. A previous write obtained a desired range token for more than it needed.

In either case, the kernel extension determines that the buffer is not available, suspends the application

thread, and sends a message to a daemon service thread requesting the buffer. If the write call is for a

full file system block, an empty buffer is allocated since the entire block will be replaced. If the write call is

for less than a full block and the rest of the block exists, the existing version of the block must be read and

overlaid. If the write call creates a new block in the file, the daemon searches the allocation map for a

block that is free and assigns it to the file. With both a buffer assigned and a block on the disk associated

with the buffer, the write proceeds as it would in “Buffer available in memory.”

Data and tokens must be acquired:

The third, and most complex path through write occurs when neither the buffer nor the token exists at the

local node. Prior to the allocation of a buffer, a token is acquired for the area of the file that is needed. As

was true for read, if sequential operations are occurring, a token covering a larger range than is needed

will be obtained if no conflicts exist. If necessary, the token management function will revoke the needed

90 GPFS: Concepts, Planning, and Installation Guide

token from another node holding the token. Having acquired and locked the necessary token, the write will

continue as in “Token available locally but data must be read” on page 90.

The stat system call

The stat() system call returns data on the size and parameters associated with a file. The call is issued by

the ls -l command and other similar functions. The data required to satisfy the stat() system call is

contained in the inode. GPFS processing of the stat() system call differs from other file systems in that it

supports handling of stat() calls on all nodes without funneling the calls through a server.

This requires that GPFS obtain tokens that protect the accuracy of the metadata. In order to maximize

parallelism, GPFS locks inodes individually and fetches individual inodes. In cases where a pattern can be

detected, such as an attempt to stat() all of the files in a larger directory, inodes will be fetched in parallel

in anticipation of their use.

Inodes are cached within GPFS in two forms:

1. Full inode

2. Limited stat cache form

The full inode is required to perform data I/O against the file.

The stat cache form is smaller than the full inode, but is sufficient to open the file and satisfy a stat() call.

It is intended to aid functions such as ls -l, du, and certain backup programs that scan entire directories

looking for modification times and file sizes.

These caches and the requirement for individual tokens on inodes are the reason why a second invocation

of directory scanning applications may run faster than the first.

GPFS command processing

GPFS commands fall into two categories: those that are processed locally and those that are processed at

the file system manager for the file system involved in the command. The file system manager is used to

process any command that alters the state of the file system. When commands are issued but the file

system is not mounted, a file system manager is appointed for the task. The mmchdisk command and the

mmfsck command represent two typical types of commands that are processed at the file system

manager.

The mmchdisk command

The mmchdisk command is issued when a failure that caused the unavailability of one or more disks has

been corrected. The need for the command can be determined by the output of the mmlsdisk command.

mmchdisk performs four major functions:

v It changes the availability of the disk to recovering, and to up when all processing is complete. All

GPFS utilities honor an availability of down and do not use the disk. recovering means that recovery

has not been completed but the user has authorized use of the disk.

v It restores any replicas of data and metadata to their correct value. This involves scanning all metadata

in the system and copying the latest to the recovering disk. Note that this involves scanning large

amounts of data and potentially rewriting all data on the disk. This can take a long time for a large file

system with a great deal of metadata to be scanned.

v It stops or suspends usage of a disk. This merely involves updating a disk state and should run quickly.

v Change disk attributes’ metadata.

Subsequent invocations of mmchdisk will attempt to restore the replicated data on any disk left in with an

availability of recovering

Chapter 10. GPFS architecture 91

The mmfsck Command

The mmfsck command repairs file system structures. mmfsck operates in two modes:

1. online

2. offline

For performance reasons, GPFS logging allows the condition where disk blocks are marked used but not

actually part of a file after a node failure. The online version of mmfsck cleans up that condition. Running

mmfsck -o -n scans the file system to determine if correction might be useful. The online version of

mmfsck runs on the file system manager and scans all inodes and indirect blocks looking for disk blocks

that are allocated but not used. If authorized to repair the file system, it releases the blocks. If not

authorized to repair the file system, it reports the condition to standard output on the invoking node.

The offline version of mmfsck is the last line of defense for a file system that cannot be used. It will most

often be needed in the case where GPFS recovery logs are not available because of disk media failures.

mmfsck runs on the file system manager and reports status to the invoking node. It is mutually

incompatible with any other use of the file system and checks for any running commands or any nodes

with the file system mounted. It exits if any are found. It also exits if any disks are down and require the

use of mmchdisk to change them to up or recovering. mmfsck performs a full file system scan looking

for metadata inconsistencies. This process can be lengthy on large file systems. It seeks permission from

the user to repair any problems that are found, which may result in the removal of files or directories that

are corrupt. The processing of this command is similar to those for other file systems.

NSD disk discovery

NSD disk access through disk discovery invokes the GPFS shell script /usr/lpp/mmfs/bin/
mmdevdiscover and if it exists, the user modifiable shell script /var/mmfs/etc/nsddevices.

These scripts provide a list of available disk devices that appear in the node’s local /dev file system. This

list is subsequently used by GPFS in determining if a /dev device interface on the local node maps to an

NSD name recorded in the configuration database.

The process of mapping a /dev device interface to an NSD involves GPFS opening each device in turn

and reading any NSD volume identifier potentially recorded at sector two of the disk.

If GPFS discovers that a NSD volume identifier read from a disk device matches the volume identifier

recorded with the NSD name in the GPFS configuration database, I/O for the local node proceeds over the

local /dev interface.

If no /dev mapping appears on the local node for a particular NSD, I/O proceeds over the IP network to

the first NSD server specified in the server list for that NSD. If the first NSD server in the server list is not

available, I/O proceeds sequentially through the server list until it finds an available NSD server.

Consult the /usr/lpp/mmfs/samples/nsddevices.sample file for configuration guidelines on how to

provide additional disk discovery capabilities unique to your configuration.

Failure recovery processing

In general, it is unnecessary to understand the internals of GPFS failure recovery processing. However

some familiarity with the concepts might be useful when failures are observed.

It should be noted that only one state change, such as the loss or initialization of a node, can be

processed at a time and subsequent changes will be queued. This means that the entire failure processing

must complete before the failed node can join the group again. All failures are processed first, which

means that GPFS will handle all failures prior to completing any recovery.

92 GPFS: Concepts, Planning, and Installation Guide

GPFS recovers from node failure using join or leave processing messages that are sent explicitly by the

cluster manager node. The cluster manager node observes that a node has failed when it no longer

receives heartbeat messages from the node. The join or leave processing messages are broadcast to the

entire group of nodes running GPFS, and each node updates its current status for the failing or joining

node. Failure of the cluster manager node results in a new cluster manager being elected and processing

a failure message for the old cluster manager.

When notified that a node has failed or that the GPFS daemon has failed on a node, GPFS invokes

recovery for each of the file systems that were mounted on the failed node. If necessary, new file system

managers are selected for any file systems that no longer have one.

The file system manager for each file system ensures the failed node no longer has access to the disks

comprising the file system. If the file system manager is newly appointed as a result of this failure, it

rebuilds token state by querying the other nodes of the group. After this is complete, the actual recovery of

the log of the failed node proceeds. This recovery will rebuild the metadata that was being modified at the

time of the failure to a consistent state with the possible exception that blocks may be allocated that are

not part of any file and are effectively lost until mmfsck is run, online or offline. After log recovery is

complete, the locks held by the failed nodes are released for this file system. Completion of this activity for

all file systems completes the failure processing. The completion of the protocol allows a failed node to

rejoin the cluster.

Cluster configuration data files

GPFS commands save configuration and file system information in one or more files collectively known as

GPFS cluster configuration data files. These files are not intended to be modified manually.

The GPFS administration commands are designed to keep these file synchronized between each other

and with the GPFS system files on each node in the cluster. The GPFS commands constantly update the

GPFS cluster configuration data files and any user modification made to this information may be lost

without warning. On AIX nodes this includes the GPFS file system stanzas in /etc/filesystems and on

Linux nodes the lists in /etc/fstab.

The GPFS cluster configuration data is stored in the /var/mmfs/gen/mmsdrfs file. This file is stored on

the nodes designated as the primary GPFS cluster configuration server and, if specified, the secondary

GPFS cluster configuration server. See “GPFS cluster configuration servers” on page 22. The first record

in the mmsdrfs file contains a generation number. Whenever a GPFS command causes something to

change in the cluster or any of the file systems, this change is reflected in the mmsdrfs file and the

generation number is increased by one. The latest generation number is always recorded in the mmsdrfs

file on the primary and secondary GPFS cluster configuration server nodes.

When running GPFS administration commands, it is necessary for the GPFS cluster configuration data to

be accessible to the node running the command. Commands that update the mmsdrfs file require that

both the primary and, if specified, the secondary GPFS cluster configuration server nodes are accessible.

If one of the server nodes is inaccessible it can be changed through the mmchcluster command.

Similarly, when the GPFS daemon starts up, at least one of the two server nodes must be accessible.

Based on the information in the GPFS cluster configuration data, the GPFS commands generate and

maintain a number of system files on each of the nodes in the GPFS cluster. Some of these files are:

/etc/fstab

On Linux nodes, contains lists for all GPFS file systems that exist in the cluster.

/etc/filesystems

On AIX nodes, contains lists for all GPFS file systems that exist in the cluster.

/var/mmfs/gen/mmfsNodeData

Contains GPFS cluster configuration data pertaining to the node.

Chapter 10. GPFS architecture 93

/var/mmfs/gen/mmsdrfs

Contains a local copy of the mmsdrfs file found on the primary and secondary GPFS cluster

configuration server nodes.

/var/mmfs/gen/mmfs.cfg

Contains GPFS daemon startup parameters.

GPFS backup data

The GPFS mmbackup command creates several files during command execution. Some of the files are

temporary and deleted at the end of the backup operation. There are other files that remain in the root

directory of the file system and should not be deleted.

Those files are:

.mmbuControl

Contains the control information and the results from the previous invocation of the mmbackup

command. This includes the node designated as the backup server, nodes designated as backup

clients, the number of processes per client node, the completion level (return code), and the total

number of inodes processed. This information is used in resuming a partially successful backup.

.mmbuPendingChgs

Contains information regarding a partially successful invocation of the mmbackup command,

where all changes did not complete. This file is used when the command is reissued with the

resume (-R) option.

.mmbuPendingDels

Contains information regarding a partially successful invocation of the mmbackup command,

where all deletions did not complete. This file is used when the command is reissued with the

resume (-R) option.

.mmbuShadowCheck

Contains a list of all the files that were backed up. This file is used for subsequent incremental

backups. The backup restore utility performs a full incremental backup where files deleted from the

file system are deleted from the backup copy. In order to determine which files have since been

deleted, this file must be available from the previous backup. The size of the shadow file is

approximately (1100 * N) bytes, where N is the number of files in the file system.

The mmbackup command may create other files as well. Assume that files whose names begin with

.mmbu are associated with the mmbackup command, and do not manually delete or change them.

94 GPFS: Concepts, Planning, and Installation Guide

Chapter 11. IBM Virtual Shared Disk considerations

On AIX nodes in your cluster, disk subsystem support may be provided through the IBM Virtual Shared

Disk component and the IBM Recoverable Virtual Shared Disk component.

v The IBM Virtual Shared Disk component provides disk driver level support for GPFS cluster wide disk

accessibility.

v The IBM Recoverable Virtual Shared Disk component provides the capability to fence a node from

accessing certain disks, which is a prerequisite for successful recovery of that node. It also provides for

transparent failover of disk access in the event of the failure of a disk server.

Software simulation of a SAN is provided by the use of the IBM Virtual Shared Disk component of RSCT.

Disks attached in this manner are formatted into virtual shared disks for use by GPFS through the

mmcrvsd command provided by GPFS or by the createvsd command provided by the RSCT subsystem.

The IBM Virtual Shared Disk subsystem supports two methods of external disk access:

v A non-concurrent mode in which only one virtual shared disk server has access to a shared external

disk at a given time. A primary and a backup server are defined.

v A concurrent mode in which multiple servers are defined to access the disk concurrently.

The IBM Recoverable Virtual Shared Disk component allows a secondary or backup server to be defined

for a logical volume, providing the fencing capabilities required to preserve data integrity in the event of

certain system failures. See “Node failure” on page 14. Therefore, the IBM Recoverable Virtual Shared

Disk component is required even in the event there are no twin-tailed disks. The Reliable Scalable Cluster

Technology: Managing Shared Disks manual contains installation, management, and usage information for

both the IBM Virtual Shared Disk and the IBM Recoverable Virtual Shared Disk.

Virtual shared disk server considerations

There are several virtual shared disk server considerations that you need to plan for including disk

distribution and disk connectivity.

Will your virtual shared disk servers be dedicated servers or will you also be using them to run

applications? If you will have non-dedicated servers, consider running less time-critical applications on

these nodes. If you run time-critical applications on a virtual shared disk server, servicing disk requests

from other nodes might conflict with the demands of these applications.

The special functions of the GPFS file system manager consume extra processing time. If possible, avoid

using a virtual shared disk server as the file system manager. The virtual shared disk server consumes

both memory and processor cycles that could impact the operation of the file system manager. See “The

file system manager” on page 80.

The actual processing capability required for virtual shared disk service is a function of the application I/O

access patterns, the type of node, the type of disk, and the disk connection. You can later run iostat on

the server to determine how much of a load your access pattern will place on a virtual shared disk server.

Assure that you have sufficient resources to run the IBM Virtual Shared Disk program efficiently. This

includes enough buddy buffers of sufficient size to match your file system block size, as well as setting

other parameters in the communications subsystem. See the Reliable Scalable Cluster Technology:

Managing Shared Disks manual for your environment and search on Performance and tuning

considerations for virtual shared disks.

© Copyright IBM Corp. 1998, 2008 95

Disk distribution

Plan how to distribute your disks among the virtual shared disk servers. Two considerations should guide

your decision. One involves providing sufficient disks and adapters on the system to yield the required I/O

bandwidth. The other involves knowing approximately how much storage capacity you will need for your

data. Dedicated virtual shared disk servers should have sufficient disks and adapters to drive the I/O load

you expect them to handle. See “Disk I/O” on page 73 for further information on configuring your disk I/O

options.

Prepare a list of disks that each virtual shared disk server will be using. This list will be helpful when

creating disk descriptors during file system creation. If you have multi-tailed disks, and want to configure

for primary and backup virtual shared disk servers (to protect against virtual shared disk server node

failure), record the disk device name on the primary server, and the node numbers of the primary and

backup servers. For example, if your virtual shared disk servers are nodes 1, 3, 5, and 7:

Disk on Primary node Backup node

hdisk2 1 3

hdisk3 3 1

hdisk2 5 n/a

hdisk2 7 n/a

In this case, nodes 1 and 3 share disks using multi-tailing and will back up each other. However, nodes 5

and 7 will each bear the full responsibility of serving their disks. These are the disks that will be made into

virtual shared disks from which your GPFS file system will be constructed.

Disk connectivity

If your disks are capable of twin-tailing and you wish to exploit this capability, you must select an alternate

node as the backup virtual shared disk server. See the Reliable Scalable Cluster Technology: Managing

Shared Disks manual for your environment for help in selecting these nodes.

Virtual shared disk creation considerations

GPFS uses virtual shared disks to access raw logical volumes as if they were local at each of the nodes.

Although the Managing Shared Disks book is the definitive source for instructions on how to create virtual

shared disks, you can have GPFS create them through the mmcrvsd command.

For performance reasons, GPFS creates one virtual shared disk for each physical disk specified for the file

system, and assigns an optimal partition size based on the disk’s capacity. A virtual shared disk name is

also automatically generated. If you want to take advantage of the flexibility available in creating virtual

shared disks, follow the instructions in the Reliable Scalable Cluster Technology: Managing Shared Disks

manual then pass the newly created virtual shared disk to the GPFS file system by specifying the virtual

shared disk name (see “Disks for your file system” on page 33).

The mmcrvsd command expects as input a file, DescFile, containing a disk descriptor, one per line, for

each of the disks to be processed. Disk descriptors have the format:

DiskName:ServerList::DiskUsage:FailureGroup:DesiredName:StoragePool

DiskName

The physical device name of the disk you want to define as a virtual shared disk. This is the /dev

name for the disk on the node on which the mmcrvsd command is issued and can be either an

hdisk name or a vpath name for an SDD device. Each disk will be used to create a single virtual

shared disk.

 Alternatively, the name of a virtual shared disk created using AIX and virtual shared disk

commands. In this case, the virtual shared disk is registered in the GPFS configuration database

for subsequent use by GPFS commands.

96 GPFS: Concepts, Planning, and Installation Guide

|

PrimaryServer

The name of the primary virtual shared disk server node.

BackupServer

The backup server name.

Disk Usage

What is to be stored on the disk.

dataAndMetadata

Indicates that the disk contains both data and metadata. This is the default.

dataOnly

Indicates that the disk contains data and does not contain metadata.

metadataOnly

Indicates that the disk contains metadata and does not contain data.

descOnly

Indicates that the disk contains no data or metadata and is used solely to keep a copy of

the file system descriptor. Such a disk allows file system descriptor quorum to be

maintained.

Disk usage considerations:

1. The DiskUsage parameter is not utilized by the mmcrvsd

command but is copied intact to the output file that the

command produces. The output file may then be used as input

to the mmcrnsd command.

2. RAID devices are not well-suited for performing small block

writes. Since GPFS metadata writes are often smaller than a full

block, you may find using non-RAID devices for GPFS metadata

better for performance.

FailureGroup

A number identifying the failure group to which this disk belongs. All disks that are either attached

to the same adapter or virtual shared disk server have a common point of failure and should

therefore be placed in the same failure group as shown in Figure 14.

 GPFS uses this information during data and metadata placement to assure that no two replicas of

the same block will become unavailable due to a single failure. You can specify any value from -1

(where -1 indicates that the disk has no point of failure in common with any other disk) to 4000. If

you specify no failure group, the value defaults to the primary virtual shared disk server node

number plus 4000, thereby creating distinct failure groups.

Figure 14. Basic failure groups with servers and disks

Chapter 11. IBM Virtual Shared Disk considerations 97

If you plan to use both twin-tailed disks and replication, assign disks to the failure groups with their

primary servers, as shown in Figure 15. This arrangement would assure availability of replicated

data if either server failed.

Failure group considerations: The FailureGroup parameter is not utilized by the mmcrvsd

command but is copied intact to the output file that the command

produces. The output file may then be used as input to the

mmcrnsd command.

DesiredName

Specify the name you desire for the virtual shared disk to be created. This name must not already

be used by another GPFS disk name, and it must not begin with the reserved string ″gpfs″. If a

desired name is not specified, the virtual shared disk is assigned a name according to the

convention:

gpfsNNvsd

Where NN is a unique non negative integer not used in any prior virtual shared disk.

These global disk names must be subsequently used on all GPFS commands. GPFS

commands, other than the mmcrvsd command, will not accept physical disk device

names.

If a desired name is specified on the disk descriptor, mmcrvsd uses that name as the basis for

the names of the global volume group, local logical volume, and local volume group name

according to the convention:

DesiredNamegvg

The global volume group

DesiredNamelv

The local logical volume

DesiredNamevg

The local volume group

If a desired name is not specified on the disk descriptor, mmcrvsd assigns the names of the

global volume group, local logical volume, and local volume group name according to the

convention:

gpfsNNgvg

Where NN is a unique non negative integer not used in any prior global volume group

named with this convention.

gpfsNNlv

Where NN is a unique non negative integer not used in any prior logical volume named

with this convention.

Figure 15. Failure groups with twin-tailed disks

98 GPFS: Concepts, Planning, and Installation Guide

gpfsNNvg

Where NN is a unique non negative integer not used in any prior volume group named

with this convention.

StoragePool

Specifies the name of the storage pool that the NSD is assigned to. This field is ignored by the

mmcrnsd command, and is passed unchanged to the output descriptor file produced by the

mmcrnsd command.

Upon successful completion of the mmcrvsd command the disk descriptors in the input file are rewritten:

v The physical device or vpath name is replaced with the created virtual shared disk name.

v The primary and backup servers are omitted.

v The DiskUsage and FailureGroup fields are not changed.

The rewritten disk descriptor file, DescFile, can then be used as input to the mmcrnsd command. The

DiskUsage and FailureGroup specifications in the disk descriptor are only preserved in the DescFile file

rewritten by the mmcrvsd command. If you do not use this file, you must accept the default values or

specify these values when creating disk descriptors for subsequent mmcrfs, mmadddisk, or mmrpldisk

commands.

If necessary, the DiskUsage and FailureGroup values for a disk can be changed with the mmchdisk

command. The virtual shared disk name cannot be changed.

Virtual shared disk server and disk failure

One means of data protection is the use of a RAID controller, which masks disk failures with parity disks.

An ideal configuration is shown in Figure 16, where a RAID device is twin-tailed to two nodes. This

protects against server failure as well.

If node 1, the primary server, fails, its responsibilities are assumed by node 2, the backup server, as

shown in Figure 17 on page 100.

Figure 16. Primary node serving RAID device

Chapter 11. IBM Virtual Shared Disk considerations 99

If your disks are SAN-attached to the virtual shared disk servers, an ideal configuration is shown in

Figure 18.

Another means of data protection is through the use of concurrent virtual shared disks, as shown in

Figure 19 on page 101. Concurrent disk access allows you to use multiple servers to satisfy disk requests

by taking advantage of the concurrent disk access environment supplied by AIX. For further information

regarding concurrent virtual shared disks, see the Reliable Scalable Cluster Technology: Managing Shared

Disks manual for your environment.

Figure 17. Backup node serving RAID device

High Performance Switch

RAID controller/ESS

FC switch 2FC switch 1

node 2
secondary vsd server

node 3
vsd client

node 1
primary vsd server

Figure 18. RAID/ESS Controller multi-tailed to the primary and secondary virtual shared disk servers

100 GPFS: Concepts, Planning, and Installation Guide

You can also protect your file system against disk failure by mirroring data at the logical volume manager

(LVM) level, writing the data twice to two different disks. The addition of twin-tailed disks to such a

configuration adds protection against server failure by allowing the IBM Recoverable Virtual Shared Disk

program to route requests through a backup server.

Figure 19. Concurrent node serving device

Chapter 11. IBM Virtual Shared Disk considerations 101

102 GPFS: Concepts, Planning, and Installation Guide

Chapter 12. Considerations for GPFS applications

Application design should take into consideration the exceptions to Open Group technical standards with

regard to the stat() system call, and NFS V4 ACLs. Also, a technique to determine if a file system is

controlled by GPFS has been provided.

For more information, see the following topics:

v “Exceptions to Open Group technical standards”

v “Determining if a file system is controlled by GPFS”

v “GPFS exceptions and limitations to NFS V4 ACLs” on page 104

Exceptions to Open Group technical standards

GPFS is designed so that most applications written to The Open Group technical standard for file system

calls can access GPFS data with no modification, however, there are some exceptions.

Applications that depend on exact reporting of changes to the following fields returned by the stat() call

may not work as expected:

1. exact mtime

2. mtime

3. ctime

4. atime

Providing exact support for these fields would require significant performance degradation to all

applications executing on the system. These fields are guaranteed accurate when the file is closed.

These values will be accurate on a node right after it accesses or modifies a file, but may not be accurate

for a short while when a file is accessed or modified on some other node.

If ’exact mtime’ is specified for a file system (using the mmcrfs or mmchfs commands with the -E yes

flag), the mtime and ctime values are always correct by the time the stat() call gives its answer. If ’exact

mtime’ is not specified, these values will be accurate after a couple of minutes, to allow the

synchronization daemons to propagate the values to all nodes. Regardless of whether ’exact mtime’ is

specified, the atime value will be accurate after a couple of minutes, to allow for all the synchronization

daemons to propagate changes.

Alternatively, you may use the GPFS calls, gpfs_stat() and gpfs_fstat() to return exact mtime and atime

values.

The delayed update of the information returned by the stat() call also impacts system commands which

display disk usage, such as du or df. The data reported by such commands may not reflect changes that

have occurred since the last sync of the file system. For a parallel file system, a sync does not occur until

all nodes have individually synchronized their data. On a system with no activity, the correct values will be

displayed after the sync daemon has run on all nodes.

Determining if a file system is controlled by GPFS

A file system is controlled by GPFS if the f_type field in the statfs structure returned from a statfs() or

fstatfs() call has the value 0x47504653, which is the ASCII characters ’GPFS’.

This constant is in the gpfs.h file, with the name GPFS_SUPER_MAGIC. If an application includes

gpfs.h, it can compare f_type to GPFS_SUPER_MAGIC to determine if the file system is controlled by

GPFS.

© Copyright IBM Corp. 1998, 2008 103

GPFS exceptions and limitations to NFS V4 ACLs

GPFS has exceptions and limitations to the NFS V4 ACLs, which are listed in this topic.

The exceptions and limitations include:

 1. Alarm type ACL entries are not supported.

 2. Audit type ACL entries are not supported.

 3. Inherit entries (FileInherit and DirInherit) are always propagated to all child subdirectories. The NFS

V4 ACE4_NO_PROPAGATE_INHERIT_ACE flag is not supported.

 4. Although the NFS V4 ACL specification provides separate controls for WRITE and APPEND, GPFS

will not differentiate between the two. Either both must be specified, or neither can be.

 5. Similar to WRITE and APPEND, NFS V4 allows for separate ADD_FILE and ADD_SUBDIRECTORY

controls. In most cases, GPFS will allow these controls to be specified independently. In the special

case where the file system object is a directory and one of its ACL entries specifies both FileInherit

and DirInherit flags, GPFS cannot support setting ADD_FILE without ADD_SUBDIRECTORY (or the

other way around). When this is intended, we suggest creating separate FileInherit and DirInherit

entries.

 6. Some types of access for which NFS V4 defines controls do not currently exist in GPFS. For these,

ACL entries will be accepted and saved, but since there is no corresponding operation they will have

no effect. These include READ_NAMED, WRITE_NAMED, and SYNCHRONIZE.

 7. AIX requires that READ_ACL and WRITE_ACL always be granted to the object owner. Although this

contradicts NFS Version 4 Protocol, it is viewed that this is an area where users would otherwise

erroneously leave an ACL that only privileged users could change. Since ACLs are themselves file

attributes, READ_ATTR and WRITE_ATTR are similarly granted to the owner. Since it would not

make sense to then prevent the owner from accessing the ACL from a non-AIX node, GPFS has

implemented this exception everywhere.

 8. AIX does not support the use of special name values other than owner@, group@, and everyone@.

Therefore, these are the only valid special name for use in GPFS NFS V4 ACLs as well.

 9. NFS V4 allows ACL entries that grant users (or groups) permission to change the owner or owning

group of the file (for example, with the chown command). For security reasons, GPFS now restricts

this so that non-privileged users may only chown such a file to themselves (becoming the owner) or

to a group that they are a member of.

10. GPFS does not support NFS V4 exporting GPFS file systems from Linux nodes. NFS V3 is

acceptable.

For more information about GPFS ACLs and NFS export, see Managing GPFS access control lists and

NFS export in General Parallel File System: Administration and Programming Reference.

104 GPFS: Concepts, Planning, and Installation Guide

Accessibility features for GPFS

Accessibility features help users who have a disability, such as restricted mobility or limited vision, to use

information technology products successfully.

Accessibility features

The following list includes the major accessibility features in GPFS:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

v Keys that are discernible by touch but do not activate just by touching them

v Industry-standard devices for ports and connectors

v The attachment of alternative input and output devices

The IBM Cluster Information Center, and its related publications, are accessibility-enabled. The

accessibility features of the information center are described at http://publib.boulder.ibm.com/infocenter/
clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.addinfo.doc/access.html.

Keyboard navigation

This product uses standard Microsoft Windows navigation keys.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about the commitment that IBM

has to accessibility:

http://www.ibm.com/able

© Copyright IBM Corp. 1998, 2008 105

106 GPFS: Concepts, Planning, and Installation Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only

IBM’s product, program, or service may be used. Any functionally equivalent product, program, or service

that does not infringe any of IBM’s intellectual property rights may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions

are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Intellectual Property Law

Mail Station P300

© Copyright IBM Corp. 1998, 2008 107

2455 South Road,

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment or a fee.

The licensed program described in this document and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any

equivalent agreement between us.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs in

any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming to

the application programming interfaces for the operating platform for which the sample programs are

written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business

Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked

terms are marked on their first occurrence in this information with a trademark symbol (® or

™), these

symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law trademarks in other countries. A

current list of IBM trademarks is available on the Web at ″Copyright and trademark information″ at

www.ibm.com/legal/copytrade.shtml

Intel®, Intel Inside® (logos), MMX and Pentium® are trademarks of Intel Corporation in the United States,

other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Red Hat, the Red Hat “Shadow Man” logo, and all Red Hat-based trademarks and logos are trademarks or

registered trademarks of Red Hat, Inc., in the United States and other countries.

108 GPFS: Concepts, Planning, and Installation Guide

|
|
|
|
|
|
|

UNIX is a registered trademark of the Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Notices 109

110 GPFS: Concepts, Planning, and Installation Guide

Glossary

This glossary defines technical terms and

abbreviations used in GPFS documentation. If you

do not find the term you are looking for, refer to

the index of the appropriate book or view the IBM

Glossary of Computing Terms, located on the

Internet at: http://www-306.ibm.com/software/
globalization/terminology/index.jsp.

B

block utilization. The measurement of the percentage

of used subblocks per allocated blocks.

C

cluster. A loosely-coupled collection of independent

systems (nodes) organized into a network for the

purpose of sharing resources and communicating with

each other. See also GPFS cluster.

cluster configuration data. The configuration data

that is stored on the cluster configuration servers.

cluster manager. The node that monitors node status

using disk leases, detects failures, drives recovery, and

selects file system managers. The cluster manager is

the node with the lowest node number among the

quorum nodes that are operating at a particular time.

control data structures. Data structures needed to

manage file data and metadata cached in memory.

Control data structures include hash tables and link

pointers for finding cached data; lock states and tokens

to implement distributed locking; and various flags and

sequence numbers to keep track of updates to the

cached data.

D

Data Management Application Program Interface

(DMAPI). The interface defined by the Open Group’s

XDSM standard as described in the publication System

Management: Data Storage Management (XDSM) API

Common Application Environment (CAE) Specification

C429, The Open Group ISBN 1-85912-190-X.

deadman switch timer. A kernel timer that works on a

node that has lost its disk lease and has outstanding I/O

requests. This timer ensures that the node cannot

complete the outstanding I/O requests (which would risk

causing file system corruption), by causing a panic in

the kernel.

disk descriptor. A definition of the type of data that

the disk contains and the failure group to which this disk

belongs. See also failure group.

disposition. The session to which a data management

event is delivered. An individual disposition is set for

each type of event from each file system.

disk leasing. A method for controlling access to

storage devices from multiple host systems. Any host

that wants to access a storage device configured to use

disk leasing registers for a lease; in the event of a

perceived failure, a host system can deny access,

preventing I/O operations with the storage device until

the preempted system has reregistered.

domain. A logical grouping of resources in a network

for the purpose of common management and

administration.

F

failback. Cluster recovery from failover following

repair. See also failover.

failover. (1) The process of transferring all control of

the ESS to a single cluster in the ESS when the other

cluster in the ESS fails. See also cluster. (2) The routing

of all transactions to a second controller when the first

controller fails. See also cluster. (3) The assumption of

file system duties by another node when a node fails.

failure group. A collection of disks that share common

access paths or adapter connection, and could all

become unavailable through a single hardware failure.

fileset. A hierarchical grouping of files managed as a

unit for balancing workload across a cluster.

file-management policy. A set of rules defined in a

policy file that GPFS uses to manage file migration and

file deletion. See also policy.

file-placement policy. A set of rules defined in a

policy file that GPFS uses to manage the initial

placement of a newly created file. See also policy.

file system descriptor. A data structure containing

key information about a file system. This information

includes the disks assigned to the file system (stripe

group), the current state of the file system, and pointers

to key files such as quota files and log files.

file system descriptor quorum. The number of disks

needed in order to write the file system descriptor

correctly.

file system manager. The provider of services for all

the nodes using a single file system. A file system

manager processes changes to the state or description

of the file system, controls the regions of disks that are

allocated to each node, and controls token management

and quota management.

© Copyright IBM Corp. 1998, 2008 111

http://www.ibm.com/software/globalization/terminology/index.html
http://www.ibm.com/software/globalization/terminology/index.html
http://www.opengroup.org/
http://www.opengroup.org/
http://www.opengroup.org/
http://www.opengroup.org/

fragment. The space allocated for an amount of data

too small to require a full block. A fragment consists of

one or more subblocks.

G

GPFS cluster. A cluster of nodes defined as being

available for use by GPFS file systems.

GPFS portability layer. The interface module that

each installation must build for its specific hardware

platform and Linux distribution.

GPFS recovery log. A file that contains a record of

metadata activity, and exists for each node of a cluster.

In the event of a node failure, the recovery log for the

failed node is replayed, restoring the file system to a

consistent state and allowing other nodes to continue

working.

I

ill-placed file. A file assigned to one storage pool, but

having some or all of its data in a different storage pool.

ill-replicated file. A file with contents that are not

correctly replicated according to the desired setting for

that file. This situation occurs in the interval between a

change in the file's replication settings or suspending

one of its disks, and the restripe of the file.

indirect block. A block containing pointers to other

blocks.

IBM Virtual Shared Disk. The subsystem that allows

application programs running on different nodes to

access a logical volume as if it were local to each node.

The logical volume is local to only one of the nodes (the

server node).

inode. The internal structure that describes the

individual files in the file system. There is one inode for

each file.

J

journaled file system (JFS). A technology designed

for high-throughput server environments, which are

important for running intranet and other

high-performance e-business file servers.

junction.

 A special directory entry that connects a name in a

directory of one fileset to the root directory of another

fileset.

K

kernel. The part of an operating system that contains

programs for such tasks as input/output, management

and control of hardware, and the scheduling of user

tasks.

L

logical volume. A collection of physical partitions

organized into logical partitions, all contained in a single

volume group. Logical volumes are expandable and can

span several physical volumes in a volume group.

Logical Volume Manager (LVM). A set of system

commands, library routines, and other tools that allow

the user to establish and control logical volume (LVOL)

storage. The LVM maps data between the logical view

of storage space and the physical disk drive module

(DDM).

M

metadata. A data structures that contain access

information about file data. These include: inodes,

indirect blocks, and directories. These data structures

are not accessible to user applications.

metanode. The one node per open file that is

responsible for maintaining file metadata integrity. In

most cases, the node that has had the file open for the

longest period of continuous time is the metanode.

mirroring. The process of writing the same data to

multiple disks at the same time. The mirroring of data

protects it against data loss within the database or

within the recovery log.

multi-tailed. A disk connected to multiple nodes.

N

namespace. Space reserved by a file system to

contain the names of its objects.

Network File System (NFS). A protocol, developed by

Sun Microsystems, Incorporated, that allows any host in

a network to gain access to another host or netgroup

and their file directories.

Network Shared Disk (NSD). A component for

cluster-wide disk naming and access.

NSD volume ID. A unique 16 digit hex number that is

used to identify and access all NSDs.

node. An individual operating-system image within a

cluster. Depending on the way in which the computer

system is partitioned, it may contain one or more nodes.

112 GPFS: Concepts, Planning, and Installation Guide

node descriptor. A definition that indicates how GPFS

uses a node. Possible functions include: manager node,

client node, quorum node, and nonquorum node

node number. A number that is generated and

maintained by GPFS as the cluster is created, and as

nodes are added to or deleted from the cluster.

node quorum. The minimum number of nodes that

must be running in order for the daemon to start.

node quorum with tiebreaker disks. A form of

quorum that allows GPFS to run with as little as one

quorum node available, as long as there is access to a

majority of the quorum disks.

non-quorum node. A node in a cluster that is not

counted for the purposes of quorum determination.

P

policy. A list of file-placement and service-class rules

that define characteristics and placement of files.

Several policies can be defined within the configuration,

but only one policy set is active at one time.

policy rule. A programming statement within a policy

that defines a specific action to be preformed.

pool. A group of resources with similar characteristics

and attributes.

portability. The ability of a programming language to

compile successfully on different operating systems

without requiring changes to the source code.

primary GPFS cluster configuration server. In a

GPFS cluster, the node chosen to maintain the GPFS

cluster configuration data.

private IP address. A IP address used to

communicate on a private network.

public IP address. A IP address used to communicate

on a public network.

Q

quorum node. A node in the cluster that is counted to

determine whether a quorum exists.

quota. The amount of disk space and number of

inodes assigned as upper limits for a specified user,

group of users, or fileset.

quota management. The allocation of disk blocks to

the other nodes writing to the file system, and

comparison of the allocated space to quota limits at

regular intervals.

R

Redundant Array of Independent Disks (RAID). A

collection of two or more disk physical drives that

present to the host an image of one or more logical disk

drives. In the event of a single physical device failure,

the data can be read or regenerated from the other disk

drives in the array due to data redundancy.

recovery. The process of restoring access to file

system data when a failure has occurred. Recovery can

involve reconstructing data or providing alternative

routing through a different server.

replication. The process of maintaining a defined set

of data in more than one location. Replication involves

copying designated changes for one location (a source)

to another (a target), and synchronizing the data in both

locations.

rule. A list of conditions and actions that are triggered

when certain conditions are met. Conditions include

attributes about an object (file name, type or extension,

dates, owner, and groups), the requesting client, and

the container name associated with the object.

S

SAN-attached. Disks that are physically attached to all

nodes in the cluster using Serial Storage Architecture

(SSA) connections or using fibre channel switches

secondary GPFS cluster configuration server. In a

GPFS cluster, the node chosen to maintain the GPFS

cluster configuration data in the event that the primary

GPFS cluster configuration server fails or becomes

unavailable.

Secure Hash Algorithm digest (SHA digest). A

character string used to identify a GPFS security key.

Serial Storage Architecture (SSA). An American

National Standards Institute (ANSI) standard,

implemented by IBM, for a high-speed serial interface

that provides point-to-point connection for peripherals,

such as storage arrays.

session failure. The loss of all resources of a data

management session due to the failure of the daemon

on the session node.

session node. The node on which a data

management session was created.

Small Computer System Interface (SCSI). An

ANSI-standard electronic interface that allows personal

computers to communicate with peripheral hardware,

such as disk drives, tape drives, CD-ROM drives,

printers, and scanners faster and more flexibly than

previous interfaces.

Glossary 113

snapshot. A copy of changed data in the active files

and directories of a file system with the exception of the

inode number, which is changed to allow application

programs to distinguish between the snapshot and the

active files and directories.

source node. The node on which a data management

event is generated.

SSA. See Serial Storage Architecture.

stand-alone client. The node in a one-node cluster.

storage area network (SAN). A dedicated storage

network tailored to a specific environment, combining

servers, storage products, networking products,

software, and services.

storage pool. A grouping of storage space consisting

of volumes, logical unit numbers (LUNs), or addresses

that share a common set of administrative

characteristics.

stripe group. The set of disks comprising the storage

assigned to a file system.

striping. A storage process in which information is

split into blocks (a fixed amount of data) and the blocks

are written to (or read from) a series of disks in parallel.

subblock. The smallest unit of data accessible in an

I/O operation, equal to one thirty-second of a data

block.

system storage pool. A storage pool containing file

system control structures, reserved files, directories,

symbolic links, special devices, as well as the metadata

associated with regular files, including indirect blocks

and extended attributes The system storage pool can

also contain user data.

T

token management. A system for controlling file

access in which each application performing a read or

write operation is granted some form of access to a

specific block of file data. Token management provides

data consistency and controls conflicts. Token

management has two components: the token

management server, and the token management

function.

token management function. A component of token

management that requests tokens from the token

management server. The token management function is

located on each cluster node.

token management server. A component of token

management that controls tokens relating to the

operation of the file system. The token management

server is located at the file system manager node.

twin-tailed. A disk connected to two nodes.

U

user storage pool. A storage pool containing the

blocks of data that make up user files.

V

virtual file system (VFS). A remote file system that

has been mounted so that it is accessible to the local

user.

virtual shared disk. See IBM Virtual Shared Disk.

virtual node (vnode). The structure that contains

information about a file system object in an virtual file

system (VFS).

114 GPFS: Concepts, Planning, and Installation Guide

Index

Special characters
/tmp/mmfs

collecting problem determination data in 41

A
access control lists (ACLs)

file system authorization 35

access control on GPFS file systems
Windows 54

access to file systems
access patterns of applications 70

simultaneous 2

accessibility features for the GPFS product 105

adapter
invariant address requirement 13

administration commands
GPFS 5, 86

AdminNodeName 86

AIX
communication with GPFS 87

electronic license agreement 48

installation instructions for GPFS 47

installing GPFS 48

prerequisite software 47

allocation map
block 82

inode 82

logging of 83

antivirus software
Windows 53

application programs
access patterns 70

communicating with GPFS 87

applying maintenance levels to GPFS 66

atime 103

atime value 34

autoload attribute 23

automatic mount
shared file system access 3

B
backing up a file system

files created during 94

bandwidth
increasing aggregate 2

block
allocation map 82

size 33

block allocation map 35

buddy buffers 74

C
cache 84

GPFS token system’s affect on 69

cache (continued)
GPFS usage 68

pageable memory for file attributes not in file

cache 68

pagepool 68

total number of different file cached at one time 68

case sensitivity
Windows 53

Channel Bonding 70

cluster configuration data files
/var/mmfs/gen/mmsdrfs file 93

content 93

cluster manager
description 79

initialization of GPFS 87

coexistence considerations 65

collecting problem determination data 41

commands
description of GPFS commands 5

error communication 87

failure of 22

GPFS administration 86

mmadddisk 27

mmaddnode 86

mmbackup 94

mmchcluster 86

mmchconfig 84, 86

mmchdisk 91

mmcheckquota 38, 88

mmchfs 30, 32, 36, 37

mmconfig 84

mmcrcluster 13, 20, 43, 47, 86

mmcrfs 27, 30, 32, 36, 37

mmcrnsd 25, 96

mmcrvsd 96, 99

mmdefedquota 38

mmdefquotaon 38

mmedquota 38

mmfsck 83, 88, 92

mmlsdisk 29, 91

mmlsquota 38

mmmount 88

mmrepquota 38

mmrpldisk 27

mmstartup 23

operating system 87

processing 91

remote file copy
rcp 23

remote shell
rsh 22

communication
GPFS daemon to daemon 21

invariant address requirement 13

communications I/O
AIX nodes 73

Linux nodes 71

compatibility considerations 65

© Copyright IBM Corp. 1998, 2008 115

concurrent virtual shared disks, use of 100

configuration
files 93

flexibility in your GPFS cluster 4

of a GPFS cluster 20

configuration and tuning settings
access patterns 70

aggregate network interfaces 70

AIX settings 73

buddy buffers 74

clock synchronization 67

communications I/O 71, 73

configuration file 23

default values 23

disk I/O 72, 73

general settings 67

GPFS files 5

GPFS helper threads 71

GPFS I/O 69, 73

GPFS pagepool 68

HPS 74

IBM Virtual Shared Disk 74

IP packet size 75

Jumbo Frames 71

Linux settings 71

monitoring GPFS I/O performance 67

security 68

swap space 70

switch pool 74

TCP window 71

use with Oracle 75

configuring Windows 56

considerations for GPFS applications 103

creating GPFS directory
/tmp/gpfslpp on AIX nodes 48

/tmp/gpfslpp on Linux nodes 44

creating the GPFS administrative account,

Windows 56

ctime 103

D
daemon

communication 21

description of the GPFS daemon 5

memory 84

quorum requirement 79

starting 23

data
availability 3

consistency of 3

guarding against failure of a path to a disk 19

recoverability 14

replication 36

data blocks
logging of 83

recovery of 83

Data Management API (DMAPI)
enabling 39

default quotas
description 38

default quotas (continued)
files 83

descOnly 30

differences between GPFS and NTFS
Windows 54

disaster recovery
use of GPFS replication and failure groups 3

disk descriptor replica 29

disks
considerations 24

descriptor 27

disk descriptor 26

failure 17

file system descriptor 81

free space 24

I/O settings 72

I/O tuning parameters 73

media failure 92

mmcrfs command 33

NSD server configuration 7

planning for virtual shared disks 96

recovery 91

releasing blocks 92

state of 91

storage area network 24

storage area network configuration 7

stripe group 81

usage 26, 30

DMAPI
coexistence considerations 65

considerations for IBM Tivoli Storage Manager for

Space Management 65

DMAPI file handle size considerations
for IBM Tivoli Storage Manager for Space

Management 65

documentation
installing man pages on AIX nodes 48

installing man pages on Linux nodes 45

E
electronic license agreement

AIX nodes 48

Linux nodes 44

estimated node count 37

EtherChannel 70

exceptions to Open Group technical standards 103

F
failure

disk 17

Network Shared Disk server 17

node 14

failure group 29

failure groups
choosing 97

definition of 3

loss of 29

preventing loss of data access 17

use of 29

116 GPFS: Concepts, Planning, and Installation Guide

file name considerations
Windows 53

file system descriptor 29, 30

failure groups 29

inaccessible 29

quorum 29

file system manager
administration command processing 87

command processing 91

communication with 87

description 80

internal log file 36

list of disk descriptors 32

mount of a file system 88

NSD creation considerations 28

quota management function 80

selection of 81

token management function 80

windows drive letter 37

file systems
access patterns of applications 70

administrative state of 5, 93

authorization 35

backing up 94

block size 33

controlled by GPFS 103

creating 30

descriptor 81

device name 32

disk descriptor 33

disk descriptors 32

enabling DMAPI 39

GPFS control 103

interacting with a GPFS file system 87

internal log file 36

last time accessed 34

list of disk descriptors 32, 36

maximum number of 82

maximum number of files 37

maximum number of mounted files 82

maximum size supported 82

metadata 81

metadata integrity 81

mount options 37

mounting 3, 33, 39, 88

mountpoint 37

number of nodes mounted by 37

opening a file 88

quotas 38

reading a file 89

recoverability parameters 36

repairing 92

sample creation 39

shared access among clusters 2

simultaneous access 2

sizing 30

stripe group 81

time last modified 35

windows drive letter 37

writing to a file 89

files
/.rhosts 68

/etc/filesystems 93

/etc/fstab 93

/var/mmfs/etc/mmfs.cfg 94

/var/mmfs/gen/mmsdrfs 93, 94

.mmbuControl 94

.mmbuPendingChgs 94

.mmbuPendingDels 94

.mmbuShadowCheck 94

.toc 48

consistency of data 3

fileset.quota 83

GPFS recovery logs 83

group.quota 83

inode 82

installation on AIX nodes 47

installation on Linux nodes 43

maximum number of 37, 82

mmfslinux 6

structure within GPFS 81

user.quota 83

files systems
maximum size 82

fragments, storage of files 34

FSDesc structure 29

G
GPFS administration commands 85

GPFS administrative adapter port name 21

GPFS clusters 1

administration adapter port name 21

administration commands 86

configuration data files 5

configuration file 23

configuration servers 22

creating 20

daemon
starting 23

daemon communication 85

definition of 7

heterogeneous clusters
NSD server and virtual shared disk server

attached disks 8

NSD server attached disks 7

utilizing an HPS 8

homogenous clusters
NSD server attached disks 7, 9

SAN-attached disks 7

naming 23

nodes in the cluster 21

operating environment 7

planning nodes 20

portability layer 45

recovery logs
creation of 83

unavailable 92

requirements 10

server nodes 20

shared file system access 9

Index 117

GPFS clusters (continued)
starting the GPFS daemon 23, 79

user ID domain 23

GPFS communications adapter port name 21

GPFS daemon communications 85

GPFS for Windows Multiplatform
overview 51

GPFS limitations on Windows 52

GPFS, installing over a network 49

grace period, quotas 38

H
hard limit, quotas 38

hardware requirements 13

helper threads
tuning 71

High Performance Switch
NSD creation consideration 26

HPS
NSD creation consideration 26

tuning parameters 74

I
IBM Recoverable Virtual Shared Disk 24

use of 95

IBM Tivoli Storage Manager for Space Management
DMAPI file handle size considerations 65

IBM Virtual Shared Disk
tuning parameters 74

use of 95

indirect blocks 81, 83

indirection level 81

initialization of the GPFS daemon 87

inode
allocation file 82

allocation map 82

cache 84

logging of 83

usage 81, 91

installing and configuring OpenSSH, Windows 57

installing GPFS
on Windows nodes 58

over a network 49

installing GPFS on AIX nodes
creating the GPFS directory 48

directions 49

electronic license agreement 48

existing GPFS files 49

files used during 47

man pages 48

procedures for 48

table of contents file 48

verifying the GPFS installation 49

what to do before you install GPFS 47

installing GPFS on Linux nodes
building your GPFS portability layer 45

creating the GPFS directory 44

directions 45

electronic license agreement 44

installing GPFS on Linux nodes (continued)
files used during 43

License Acceptance Process (LAP) Tool 44

man pages 45

procedure for 44

verifying the GPFS installation 45

what to do before you install GPFS 43

installing GPFS on Windows nodes 51

installing GPFS prerequisites 55

installing the subsystem for UNIX-based Applications

(SUA) 57

introduction
GPFS clusters 1

invariant address adapter
requirement 13

IP address
private 85

public 85

IP packet size 75

IP_max_msg_size parameter 75

ipqmaxlen parameter 73

J
Jumbo Frames 71

K
kernel extensions 5

kernel memory 84

L
License Acceptance Process (LAP) Tool 44

license inquiries 107

link aggregation 70

Linux
installation instructions for GPFS 43

installing GPFS 44

kernel requirement 14

prerequisite software 43

load balancing across disks 2

LookAt message retrieval tool xii

M
maintenance levels of GPFS, applying 66

man pages
installing on AIX nodes 48

installing on Linux nodes 45

max_coalesce parameter 73

maxFilesToCache parameter
definition 68

memory usage 84

maximum number of files 37

maxStatCache parameter
definition 68

memory usage 84

memory
controlling 68

118 GPFS: Concepts, Planning, and Installation Guide

memory (continued)
swap space 70

usage 84

used to cache file data and metadata 69

message retrieval tool, LookAt xii

metadata 81

disk usage to store 26

replication 36

metanode 81

migrating
before you begin migration 60

completing the migration 62

reverting to the previous level of GPFS 64

to GPFS 3.2 from GPFS 2.2 or earlier releases 60

to GPFS 3.2 from GPFS 2.3 59

to GPFS 3.2 from GPFS 3.1 59

to the new level of GPFS 60, 62

mmadddisk command
and rewritten disk descriptor file 27

mmaddnode 86

mmchcluster 86

mmchconfig 86

mmchfs 37

mmcrcluster 86

mmcrfs 37

mmcrfs command
and rewritten disk descriptor file 27

mmcrnsd command 25, 96

mmcrvsd command 96

mmlsdisk command 29

mmrpldisk command
and rewritten disk descriptor file 27

mount options 37

mounting a file system 33, 37, 39, 88

mountpoint 37

mtime 103

mtime values 35

Multiple Path I/O (MPIO)
utilizing 19

N
network

communication within your cluster 2

Network File System (NFS)
’deny-write open lock’ 33

access control lists 35

network installing GPFS 49

network interfaces 70

Network Shared Disk (NSD)
creation of 25

disk discovery 92

High Performance Switch consideration 26

HPS consideration 26

SAN configuration 7

server configuration 7

server disk considerations 24

server failure 17

server list 26

server node considerations 28

NFS V4 ACL
GPFS exceptions 104

special names 104

NFS V4 protocol
GPFS exceptions 104

node quorum
definition of 15

selecting nodes 17

node quorum with tiebreaker disks
definition of 15

selecting nodes 17

nodes
acting as special managers 79

cluster manager 79

descriptor form 21

designation as manager or client 22

estimating the number of 37

failure 14

file of nodes in the cluster for installation 43, 47

file system manager 80

file system manager selection 81

in a GPFS cluster 20

in the GPFS cluster 21

quorum 22

swap space 70

notices 107

O
Open Secure Sockets Layer (OpenSSL)

use in shared file system access 2

operating system
calls 88

commands 87

Oracle
GPFS use with, tuning 75

overview
of GPFS for Windows Multiplatform 51

P
pagepool parameter

affect on performance 90

in support of I/O 84

memory usage 84

usage 68

patent information 107

PATH environment variable 43, 47

performance
access patterns 70

aggregate network interfaces 70

disk I/O settings 72

monitoring GPFS I/O performance 3

monitoring using mmpon 67

pagepool parameter 90

setting maximum amount of GPFS I/O 69, 73

use of GPFS to improve 2

use of pagepool 84

Persistent Reserve
reduced recovery time 20

Index 119

planning considerations
hardware requirements 13

recoverability 14

software requirements 14

portability layer
building 45

description 6

prefetchThreads parameter
tuning

on Linux nodes 71

use with Oracle 75

prerequisites
for Windows 55

private IP address 85

programming specifications
AIX prerequisite software 47

Linux prerequisite software 43

verifying prerequisite software 43, 47

PTF support 66

public IP address 85

Q
quorum

definition of 15

during node failure 15

enforcement 79

initialization of GPFS 87

selecting nodes 17

quotas
default quotas 38

description 38

files 83

in a replicated system 38

mounting a file system with quotas enabled 39

role of file system manager node 80

system files 38

values reported in a replicated file system 38

R
rcp 23

read operation
buffer available 89

buffer not available 89

requirements 89

token management 89

recoverability
disk failure 17

disks 91

features of GPFS 3, 92

file systems 92

node failure 14

parameters 14

recovery time
reducing with Persistent Reserve 20

reduced recovery time using Persistent Reserve 20

Redundant Array of Independent Disks (RAID)
block size considerations 34

isolating metadata 26

preventing loss of data access 17

Redundant Array of Independent Disks (RAID)

(continued)
RAID5 performance 72

use with virtual shared disks 99

remote command environment
rcp 23

rsh 22

removing GPFS, uninstalling 77

repairing a file system 92

replication
affect on quotas 38

description of 3

preventing loss of data access 17

requirements
hardware 13

software 14

restripe see rebalance 117

rewritten disk descriptor file
uses of 27

root authority 67

rpoolsize
HPS 74

rsh 22

S
security 68

shared file system access 2

servicing your GPFS system 66

setting up the Windows domain 55

shared file system access 2

shared segments 84

sizing file systems 30

snapshots
coexistence considerations with DMAPI 65

socket communications, use of 86

soft limit, quotas 38

softcopy documentation 45, 48

software requirements 14

spoolsize
HPS 74

standards, exceptions to 103

starting GPFS 23

stat cache 84

stat() system call 91

stat() system call 84

storage see memory 117

Storage Area Network (SAN)
disk configuration 7

disk considerations 24

strict replication 35

structure of GPFS 5

SUA hotfix updates for Windows 2003 R2 57

subblocks, use of 34

Subsystem Device Driver (SDD)
use of 20

Subsystem Device Driver Path Control Module

(SDDPCM)
use of 20

support
failover 3

120 GPFS: Concepts, Planning, and Installation Guide

swap space 70

switch
NSD creation consideration 26

tuning parameters 74

switch pool
configuration and tuning settings 74

system calls
open 88

read 89

stat() 91

write 89

T
TCP window 71

token management
description 80

large clusters 2

system calls 88

use of 3

trademarks 108

tuning parameters
ipqmaxlen 73

max_coalesce 73

prefetch threads
on Linux nodes 71

use with Oracle 75

rpoolsize 74

spoolsize 74

worker threads
on Linux nodes 71

use with Oracle 75

tuning parameters see also configuration and tuning

settings 117

U
uninstall

GPFS permanently 77

V
verifying

GPFS for AIX installation 49

GPFS for Linux installation 45

prerequisite software for AIX nodes 47

prerequisite software for Linux nodes 43

virtual shared disks
concurrent access 100

connectivity 96

considerations 95

creation of 96

mirroring data 101

recoverability 99

server considerations 95, 96

twin-tailed disks 101

W
Windows

access control on GPFS file systems 54

antivirus software 53

case sensitivity 53

configuring 56

creating the GPFS administrative account 56

differences between GPFS and NTFS 54

file name considerations 53

GPFS limitations 52

installation procedure 51

installing and configuring OpenSSH 57

installing GPFS on Windows nodes 58

installing SUA 57

overview 51

prerequisites 55

setting up the domain 55

SUA hotfix updates 57

worker1Threads parameter
tuning

on Linux nodes 71

use with Oracle 75

write operation
buffer available 90

buffer not available 90

token management 90

Index 121

122 GPFS: Concepts, Planning, and Installation Guide

Readers’ comments – We’d like to hear from you

General Parallel File System

Concepts, Planning, and Installation Guide

Version 3 Release 2.1

 Publication No. GA76-0413-02

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 GA76-0413-02

GA76-0413-02

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 58HA, Mail Station P181

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5724-N94
5765-G66

GA76-0413-02

	Contents
	Figures
	Tables
	About this information
	Who should read this information
	Conventions used in this information
	Prerequisite and related information
	ISO 9000
	Using LookAt to look up message explanations
	How to send your comments

	Summary of changes
	Chapter 1. Introducing General Parallel File System
	The strengths of GPFS
	Shared file system access among GPFS clusters
	Improved system performance
	File consistency
	High recoverability and increased data availability
	Enhanced system flexibility
	Simplified storage management
	Simplified administration

	The basic GPFS structure
	GPFS administration commands
	The GPFS kernel extension
	The GPFS daemon
	The GPFS open source portability layer

	GPFS cluster configurations
	Interoperable cluster requirements

	Chapter 2. Planning for GPFS
	Hardware requirements
	Software requirements
	Recoverability considerations
	Node failure
	Quorum
	Selecting quorum nodes

	Network Shared Disk server and disk failure
	Reduced recovery time using Persistent Reserve

	GPFS cluster creation considerations
	GPFS node adapter interface names
	Nodes in your GPFS cluster
	GPFS cluster configuration servers
	Remote shell command
	Remote file copy command
	Cluster name
	User ID domain for the cluster
	Starting GPFS automatically
	Cluster configuration file
	Managing distributed tokens

	Disk considerations
	NSD creation considerations
	NSD server considerations
	File system descriptor quorum

	File system creation considerations
	Device name of the file system
	List of disk descriptors
	NFS V4 'deny-write open lock'
	Disks for your file system
	Deciding how the file system is mounted
	Block size
	Fragments and subblocks

	atime values
	mtime values
	Block allocation map
	File system authorization
	Strict replication
	Internal log file
	File system recoverability parameters
	Default metadata Replicas
	Maximum metadata replicas
	Default data replicas
	Maximum data replicas

	Number of nodes mounting the file system
	Maximum number of files
	Windows drive letter
	Mountpoint directory
	Assign mount command options
	Automatic quota activation
	Default quotas
	Quota system files

	Enable DMAPI
	A sample file system creation

	Chapter 3. Steps to establishing and starting your GPFS cluster
	Chapter 4. Installing GPFS on Linux nodes
	Creating a file to ease the Linux installation process
	Verifying the level of prerequisite software
	Procedure for installing GPFS on Linux nodes
	Accepting the electronic license agreement
	Creating the GPFS directory
	Installing the GPFS man pages
	Installing GPFS over a network
	Verifying the GPFS installation

	Building your GPFS portability layer
	Using the automatic configuration tool to build GPFS portability layer

	Chapter 5. Installing GPFS on AIX nodes
	Creating a file to ease the AIX installation process
	Verifying the level of prerequisite software
	Procedure for installing GPFS on AIX nodes
	Accepting the electronic license agreement
	Creating the GPFS directory
	Creating the GPFS installation table of contents file
	Installing the GPFS man pages
	Installing GPFS over a network
	Reconciling existing GPFS files
	Verifying the GPFS installation

	Chapter 6. Installing GPFS on Windows nodes
	GPFS for Windows overview
	GPFS limitations on Windows
	File name considerations
	Case sensitivity
	Antivirus software
	Differences between GPFS and NTFS
	Access control on GPFS file systems

	Installing GPFS prerequisites
	Setting up the Windows domain
	Creating the GPFS administrative account
	Configuring Windows
	Installing the Subsystem for UNIX-based Applications
	Downloading and installing SUA hotfix updates
	Installing and configuring OpenSSH

	Procedure for installing GPFS on Windows nodes

	Chapter 7. Migration, coexistence and compatibility
	Migrating to GPFS 3.2 from GPFS 3.1
	Migrating to GPFS 3.2 from GPFS 2.3
	Migrating to GPFS 3.2 from GPFS 2.2 or earlier releases of GPFS
	Completing the migration to a new level of GPFS
	Additional considerations when migrating GPFS 2.3 and earlier file systems
	Root fileset
	System storage pool

	Reverting to the previous level of GPFS
	Reverting to a previous level of GPFS when you have not issued mmchconfig release=LATEST
	Reverting to a previous level of GPFS when you have issued mmchconfig release=LATEST

	Coexistence considerations
	Compatibility considerations
	Considerations for IBM Tivoli Storage Manager for Space Management
	Applying maintenance to your GPFS system

	Chapter 8. Configuring and tuning your system for GPFS
	General system configuration and tuning considerations
	Clock synchronization
	GPFS administration security
	Cache usage
	The GPFS token system's affect on cache settings

	GPFS I/O
	Access patterns
	Aggregate network interfaces
	Swap space

	Linux configuration and tuning considerations
	updatedb considerations
	SUSE LINUX considerations
	GPFS helper threads
	Communications I/O
	Disk I/O

	AIX configuration and tuning considerations
	Communications I/O
	Disk I/O
	Switch pool
	eServer High Performance Switch
	IBM Virtual Shared Disk
	GPFS use with Oracle

	Chapter 9. Steps to permanently uninstall GPFS
	Chapter 10. GPFS architecture
	Special management functions
	The GPFS cluster manager
	The file system manager
	The metanode

	Use of disk storage and file structure within a GPFS file system
	Quota files
	GPFS recovery logs

	GPFS and memory
	Pinned and non-pinned memory
	Non-pinned memory

	GPFS and network communication
	GPFS daemon communication
	Using public and private IP addresses for GPFS nodes

	GPFS administration commands

	Application and user interaction with GPFS
	Operating system commands
	Initialization of the GPFS daemon
	The mounting of a file system

	Operating system calls
	The open of a GPFS file
	The reading of data
	The writing of data
	The stat system call

	GPFS command processing
	The mmchdisk command
	The mmfsck Command

	NSD disk discovery
	Failure recovery processing
	Cluster configuration data files
	GPFS backup data

	Chapter 11. IBM Virtual Shared Disk considerations
	Virtual shared disk server considerations
	Disk distribution
	Disk connectivity
	Virtual shared disk creation considerations
	Virtual shared disk server and disk failure

	Chapter 12. Considerations for GPFS applications
	Exceptions to Open Group technical standards
	Determining if a file system is controlled by GPFS
	GPFS exceptions and limitations to NFS V4 ACLs

	Accessibility features for GPFS
	Accessibility features
	Keyboard navigation
	IBM and accessibility

	Notices
	Trademarks

	Glossary
	Index
	Readers' comments – We'd like to hear from you

