
General Parallel File System

Data Management API Guide

Version 3 Release 2.1

GA76-0414-02

���

General Parallel File System

Data Management API Guide

Version 3 Release 2.1

GA76-0414-02

���

Note:

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

35.

Third Edition (August 2008)

This edition applies to version 3, release 2, modification 1 of IBM General Parallel File System Multiplatform (product

number 5724-N94), IBM General Parallel File System for POWER™ (product number 5765-G66), and to all

subsequent releases and modifications until otherwise indicated in new editions. Technical changes or additions to

the text and illustrations are indicated by a vertical line (|) to the left of the change.

IBM welcomes your comments. A form for your comments may be provided at the back of this publication, or you

may send your comments to this address:

 International Business Machines Corporation

 Department 58HA, Mail Station P181

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States and Canada): 1+845+432-9405

 FAX (Other Countries): Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to

include the following in your comment or note:

v Title and order number of this publication

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

|
|
|
|

Contents

Figures . v

Tables . vii

About this information . ix

Who should read this information . ix

Conventions used in this information . ix

Prerequisite and related information . x

ISO 9000 . x

Using LookAt to look up message explanations . x

How to send your comments . xi

Summary of changes . xiii

Chapter 1. Overview of the Data Management API for GPFS 1

GPFS specific DMAPI events . 1

DMAPI functions . 2

Mandatory functions implemented in DMAPI for GPFS 2

Optional functions implemented in DMAPI for GPFS 4

Optional functions that are not implemented in DMAPI for GPFS 5

GPFS-specific DMAPI functions . 6

DMAPI configuration attributes . 6

DMAPI restrictions for GPFS . 7

Chapter 2. Data Management API principles for GPFS 9

Sessions . 9

Events . 9

Mount and unmount . 11

Tokens and access rights . 12

Parallelism in Data Management applications . 13

Data Management attributes . 13

Support for NFS . 14

Quota . 14

Memory mapped files . 14

Chapter 3. Administering the Data Management API for GPFS 15

Required files for implementation of Data Management applications 15

GPFS configuration options for DMAPI . 16

Enabling DMAPI for a file system . 17

Initializing the Data Management application . 17

Chapter 4. Specifications of enhancements in the GPFS implementation of Data Management

API . 19

Enhancements to data structures . 19

Usage restrictions on DMAPI functions . 20

Definitions for GPFS specific DMAPI functions . 22

dm_handle_to_snap . 22

dm_make_xhandle . 23

Semantic changes to DMAPI functions . 24

GPFS-specific DMAPI events . 26

Additional error codes returned by DMAPI functions . 26

Chapter 5. Failure and recovery of Data Management API for GPFS 29

© Copyright IBM Corp. 1998, 2008 iii

Single-node failure . 29

Session failure and recovery . 30

Event recovery . 31

Loss of access rights . 31

DM application failure . 32

Accessibility features for GPFS . 33

Accessibility features . 33

Keyboard navigation . 33

IBM and accessibility . 33

Notices . 35

Trademarks . 36

Glossary . 39

Index . 43

iv GPFS: DMAPI Guide

Figures

1. Flow of a typical synchronous event in multiple node GPFS 11

© Copyright IBM Corp. 1998, 2008 v

vi GPFS: DMAPI Guide

Tables

1. Typographic conventions . ix

2. DMAPI configuration attributes . 7

© Copyright IBM Corp. 1998, 2008 vii

viii GPFS: DMAPI Guide

About this information

This information describes the Data Management Application Programming Interface (DMAPI) for General

Parallel File System™ (GPFS™). This implementation is based on The Open Group’s System Management:

Data Storage Management (XDSM) API Common Applications Environment (CAE) Specification C429, The

Open Group, ISBN 1-85912-190-X specification. The implementation is compliant with the standard. Some

optional features are not implemented.

The XDSM DMAPI model is intended mainly for a single node environment. Some of the key concepts,

such as sessions, event delivery, and recovery, required enhancements for a multiple-node environment

such as GPFS.

This information applies to GPFS version 3.2.1 for AIX® and Linux®.

Note: DMAPI is not supported on Windows®.
To find out which version of GPFS is running on a particular AIX node, enter:

lslpp -l gpfs*

To find out which version of GPFS is running on a particular Linux node, enter:

rpm -qa | grep gpfs

Who should read this information

This information is intended for use by application programmers of GPFS systems. It assumes that you

are, and it is particularly important that you be, familiar with the terminology and concepts in the XDSM

standard as described in the System Management: Data Storage Management (XDSM) API Common

Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X. It also

assumes that you are experienced with and understand the GPFS program product.

Use this information if you intend to write application programs:

v To monitor events associated with a GPFS file system or with an individual file.

v To manage and maintain GPFS file system data.

Conventions used in this information

Table 1 describes the typographic conventions used in this information.

 Table 1. Typographic conventions

Typographic

convention

Usage

Bold Bold words or characters represent system elements that you must use literally, such as

commands, flags, path names, directories, file names, values, and selected menu options.

Bold Underlined Bold Underlined keywords are defaults. These take effect if you fail to specify a different

keyword.

Italic v Italic words or characters represent variable values that you must supply.

v Italics are also used for publication titles and for general emphasis in text.

© Copyright IBM Corp. 1998, 2008 ix

|

|

Table 1. Typographic conventions (continued)

Typographic

convention

Usage

Constant width All of the following are displayed in constant width typeface:

v Displayed information

v Message text

v Example text

v Specified text typed by the user

v Field names as displayed on the screen

v Prompts from the system

v References to example text

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices. (In other words, it means ″or″)

< > Angle brackets (less-than and greater-than) enclose the name of a key on the keyboard. For

example, <Enter> refers to the key on your terminal or workstation that is labeled with the

word Enter.

... An ellipsis indicates that you can repeat the preceding item one or more times.

<Ctrl-x> The notation <Ctrl-x> indicates a control character sequence. For example, <Ctrl-c> means

that you hold down the control key while pressing <c>.

\ The continuation character is used in programming examples in this information for formatting

purposes.

Prerequisite and related information

For updates to this information, see publib.boulder.ibm.com/infocenter/clresctr/topic/
com.ibm.cluster.gpfs.doc/gpfsbooks.html.

For the latest support information, see the GPFS Frequently Asked Questions at publib.boulder.ibm.com/
infocenter/clresctr/topic/com.ibm.cluster.gpfs.doc/gpfs_faqs/gpfsclustersfaq.html.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM® messages you

encounter, as well as for some system abends and codes. You can use LookAt from the following

locations to find IBM message explanations for Clusters software products:

v The Internet. You can access IBM message explanations directly from the LookAt Web site:

http://www.ibm.com/systems/z/os/zos/bkserv/lookat/

v Your wireless handheld device. You can use the LookAt Mobile Edition with a handheld device that has

wireless access and an Internet browser (for example, Internet Explorer for Pocket PCs, Blazer, or

Eudora for Palm OS, or Opera for Linux handheld devices). Link to the LookAt Mobile Edition from the

LookAt Web site.

x GPFS: DMAPI Guide

How to send your comments

Your feedback is important in helping us to produce accurate, high-quality information. If you have any

comments about this information or any other GPFS documentation:

v Send your comments by e-mail to: mhvrcfs@us.ibm.com.

Include the publication title and order number, and, if applicable, the specific location of the information

you have comments on (for example, a page number or a table number).

v Fill out one of the forms at the back of this information and return it by mail, by fax, or by giving it to an

IBM representative.

To contact the IBM cluster development organization, send your comments by e-mail to:

cluster@us.ibm.com.

About this information xi

xii GPFS: DMAPI Guide

Summary of changes

The following sections summarize changes to the GPFS licensed program and the GPFS library for

version 3, release 2, modification 1. Within each information unit in the library, a vertical line to the left of

text and illustrations indicates technical changes or additions made to the previous edition of the book.

Summary of changes

for GPFS Version 3, Release 2, Modification 1

as updated, August 2008

 Changes to GPFS and to the GPFS library for version 3, release 2, modification 1 include:

v New information

– GPFS for Windows Multiplatform, V3.2.1 supports the Windows Server 2003 R2 operating system

running on 64-bit architectures (AMD x64 / EM64T). GPFS on Windows participates in a new or

existing GPFS V3.2 cluster in conjunction with AIX and Linux (32- or 64-bit) operating systems.

– Identity mapping between Windows and UNIX® user accounts is one of the key advancements

delivered in GPFS for Windows Multiplatform. System administrators can explicitly match users and

groups defined on UNIX with those defined on Windows. This allows users to maintain file ownership

and access rights from either platform. System administrators are not required to define an identity

map. GPFS automatically creates a mapping when one is not defined. For more information about

identity mapping, see the General Parallel File System: Concepts, Planning, and Installation Guide

and the General Parallel File System: Advanced Administration Guide.

– IBM has enhanced many of the details within GPFS to support the unique semantic requirements

posed by Windows. These include case insensitive names, NTFS-like file attributes, and Windows

file locking. GPFS provides a bridge between a Windows and POSIX view of files, while not

adversely affecting the long-standing capabilities provided on AIX and Linux operating systems.

– GPFS for Windows Multiplatform provides the same core services to parallel and serial applications

as are available on AIX and Linux operating systems. GPFS allows parallel applications

simultaneous access to the same files, or different files, from any node that has the GPFS file

system mounted while managing a high level of control over all file system operations. System

administrators and users have a consistent command interface on AIX, Linux, and Windows

operating systems.

The following commands have been updated for Windows:

- mmchfs to add the -t DriveLetter option

- mmcrfs to add the -t DriveLetter option

- mmlsfs to add the -t option to display the Windows drive letter

- mmmount to add the DefaultDriveLetter and DriveLetter parameters

- mmumount to add the DefaultDriveLetter and DriveLetter parameters

With few exceptions, the commands supported on the Windows operating system are identical to the

commands supported on other GPFS platforms. For a list of unsupported commands, see the

General Parallel File System: Concepts, Planning, and Installation Guide.

– GPFS for Windows Multiplatform, V3.2.1 does not support or has restricted support for some

features. For a complete list of these limitations, see the General Parallel File System: Concepts,

Planning, and Installation Guide.

v Changed information:

Minor editorial updates marked by a vertical line to the left of the text.

v Deleted information:

There has been no information deleted from the GPFS library for GPFS V3.2.1.

© Copyright IBM Corp. 1998, 2008 xiii

xiv GPFS: DMAPI Guide

Chapter 1. Overview of the Data Management API for GPFS

The Data Management Application Programming Interface (DMAPI) for General Parallel File System

(GPFS) allows you to monitor events associated with a GPFS file system or with an individual file. You can

also manage and maintain file system data.

Note: The GPFS DMAPI implementation is not supported on Windows. DMAPI-enabled file systems will

not mount on GPFS Windows client node.

The DMAPI component of the GPFS licensed program is available with:

v GPFS 3.2.1 for AIX

v GPFS 3.2.1 for Linux on eServer™ e325 and xSeries®

v GPFS 3.2.1 for Linux

The GPFS implementation of DMAPI is compliant with the Open Group’s XDSM Standard.

The DMAPI features provided by GPFS include:

v “GPFS specific DMAPI events”

v “DMAPI functions” on page 2

v “DMAPI configuration attributes” on page 6

v “DMAPI restrictions for GPFS” on page 7

GPFS specific DMAPI events

There are three GPFS specific DMAPI events: events implemented in DMAPI for GPFS, optional events

that are not implemented in DMAPI for GPFS, and GPFS specific attribute events that are not part of the

DMAPI standard.

For more information, see:

v Events implemented in DMAPI for GPFS

v Optional events that are not implemented in DMAPI for GPFS

v GPFS specific attribute events that are not part of the DMAPI standard

Events implemented in DMAPI for GPFS

These are the events, as defined in the System Management: Data Storage Management (XDSM) API

Common Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X,

implemented in DMAPI for GPFS:

File System Administration Events

v mount

v preunmount

v unmount

v nospace

Namespace Events

v create, postcreate

v remove, postremove

v rename, postrename

v symlink, postsymlink

v link, postlink

© Copyright IBM Corp. 1998, 2008 1

|
|

Data Events

v read

v write

v truncate

Metadata Events

v attribute

v destroy

v close

Pseudo Event

v user event

GPFS guarantees that asynchronous events are delivered, except when the GPFS daemon fails. Events

are enqueued to the session before the corresponding file operation completes. For further information on

failures, see Chapter 5, “Failure and recovery of Data Management API for GPFS,” on page 29.

Optional events that are not implemented in DMAPI for GPFS

The following optional events, as defined in the System Management: Data Storage Management (XDSM)

API Common Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X,

are not implemented in DMAPI for GPFS:

File System Administration Event

v debut

Metadata Event

v cancel

GPFS specific attribute events that are not part of the DMAPI standard

GPFS generates the following attribute events for DMAPI that are specific to GPFS and not part of the

DMAPI standard:

v Pre-permission change

v Post-permission change

For additional information, refer to “GPFS-specific DMAPI events” on page 26.

DMAPI functions

All mandatory DMAPI functions and most optional functions that are defined in the System Management:

Data Storage Management (XDSM) API Common Applications Environment (CAE) Specification C429, The

Open Group, ISBN 1-85912-190-X, are implemented in DMAPI for GPFS.

For C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer to the dmapi.h file

located in the /usr/lpp/mmfs/include directory as part of the GPFS installation.

For changes and restrictions on DMAPI functions as implemented in GPFS, see “Usage restrictions on

DMAPI functions” on page 20, and “Semantic changes to DMAPI functions” on page 24. See

Mandatory functions implemented in DMAPI for GPFS

These mandatory functions, as defined in the System Management: Data Storage Management (XDSM)

API Common Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X,

are implemented in DMAPI for GPFS.

2 GPFS: DMAPI Guide

|

For C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer to the dmapi.h file

located in the /usr/lpp/mmfs/include directory as part of the GPFS installation. However, for a quick

description of the mandatory functions and their applications, refer to the following set of functions:

dm_create_session

Create a new session.

dm_create_userevent

Create a pseudo-event message for a user.

dm_destroy_session

Destroy an existing session.

dm_fd_to_handle

Create a file handle using a file descriptor.

dm_find_eventmsg

Return the message for an event.

dm_get_allocinfo

Get a file’s current allocation information.

dm_get_bulkattr

Get bulk attributes of a file system.

dm_get_config

Get specific data on DMAPI implementation.

dm_get_config_events

List all events supported by the DMAPI implementation.

dm_get_dirattrs

Return a directory’s bulk attributes.

dm_get_eventlist

Return a list of an object’s enabled events.

dm_get_events

Return the next available event messages.

dm_get_fileattr

Get file attributes.

dm_get_mountinfo

Return details from a mount event.

dm_get_region

Get a file’s managed regions.

dm_getall_disp

For a given session, return the disposition of all file system’s events.

dm_getall_sessions

Return all extant sessions.

dm_getall_tokens

Return a session’s outstanding tokens.

dm_handle_cmp

Compare file handles.

dm_handle_free

Free a handle’s storage.

dm_handle_hash

Hash the contents of a handle.

Chapter 1. Overview of the Data Management API for GPFS 3

|

dm_handle_is_valid

Check a handle’s validity.

dm_handle_to_fshandle

Return the file system handle associated with an object handle.

dm_handle_to_path

Return a path name from a file system handle.

dm_init_attrloc

Initialize a bulk attribute location offset.

dm_init_service

Initialization processing that is implementation-specific.

dm_move_event

Move an event from one session to another.

dm_path_to_fshandle

Create a file system handle using a path name.

dm_path_to_handle

Create a file handle using a path name.

dm_query_right

Determine an object’s access rights.

dm_query_session

Query a session.

dm_read_invis

Read a file without using DMAPI events.

dm_release_right

Release an object’s access rights.

dm_request_right

Request an object’s access rights.

dm_respond_event

Issue a response to an event.

dm_send_msg

Send a message to a session.

dm_set_disp

For a given session, set the disposition of all file system’s events.

dm_set_eventlist

For a given object, set the list of events to be enabled.

dm_set_fileattr

Set a file’s time stamps, ownership and mode.

dm_set_region

Set a file’s managed regions.

dm_write_invis

Write to a file without using DMAPI events.

Optional functions implemented in DMAPI for GPFS

These optional functions, as defined in the System Management: Data Storage Management (XDSM) API

Common Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X, are

implemented in DMAPI for GPFS.

4 GPFS: DMAPI Guide

For C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer to the dmapi.h file

located in the /user/lpp/mmfs/include directory as part of the GPFS installation. However, for a quick

description of the optional functions and their applications, refer to the following set of functions:

dm_downgrade_right

Change an exclusive access right to a shared access right.

dm_get_bulkall

Return a file system’s bulk data management attributes.

dm_get_dmattr

Return a data management attribute.

dm_getall_dmattr

Return all data management attributes of a file.

dm_handle_to_fsid

Get a file system ID using its handle.

dm_handle_to_igen

Get inode generation count using a handle.

dm_handle_to_ino

Get inode from a handle.

dm_make_handle

Create a DMAPI object handle.

dm_make_fshandle

Create a DMAPI file system handle.

dm_punch_hole

Make a hole in a file.

dm_probe_hole

Calculate the rounded result of the area where it is assumed that a hole is to be punched.

dm_remove_dmattr

Delete a data management attribute.

dm_set_dmattr

Define or update a data management attribute.

dm_set_return_on_destroy

Indicate a DM attribute to return with destroy events.

dm_sync_by_handle

Synchronize the in-memory state of a file with the physical medium.

dm_upgrade_right

Change a currently held access right to be exclusive.

Optional functions that are not implemented in DMAPI for GPFS

There are optional functions that are not implemented in DMAPI for GPFS.

The following optional functions, as defined in the System Management: Data Storage Management

(XDSM) API Common Applications Environment (CAE) Specification C429, The Open Group, ISBN

1-85912-190-X, are not implemented in DMAPI for GPFS:

dm_clear_inherit

Reset the inherit-on-create status of an attribute.

dm_create_by_handle

Define a file system object using a DM handle.

Chapter 1. Overview of the Data Management API for GPFS 5

dm_getall_inherit

Return a file system’s inheritable attributes.

dm_mkdir_by_handle

Define a directory object using a handle.

dm_obj_ref_hold

Put a hold on a file system object.

dm_obj_ref_query

Determine if there is a hold on a file system object.

dm_obj_ref_rele

Release the hold on a file system object.

dm_pending

Notify FS of slow DM application processing.

dm_set_inherit

Indicate that an attribute is inheritable.

dm_symlink_by_handle

Define a symbolic link using a DM handle.

GPFS-specific DMAPI functions

There are GPFS-specific DMAPI functions that are not part of the DMAPI open standard.

The GPFS-specific functions are:

dm_handle_to_snap

Get a snapshot id using a handle.

dm_make_xhandle

Create a DMAPI snapshot handle.

For additional information, refer to “Definitions for GPFS specific DMAPI functions” on page 22.

DMAPI configuration attributes

The System Management: Data Storage Management (XDSM) API Common Applications Environment

(CAE) Specification C429, The Open Group, ISBN 1-85912-190-X defines a set of configuration attributes

to be exported by each DMAPI implementation. These attributes specify which optional features are

supported and give bounds on various resources.

The Data Management (DM) application can query the attribute values using the function dm_get_config.

It can also query which events are supported, using the function dm_get_config_events.

The functions dm_get_config and dm_get_config_events receive a file handle from input arguments

hanp and hlen. In GPFS, both functions ignore the handle, as the configuration is not dependent on the

specific file or file system. This enables the DM application to query the configuration during initialization,

when file handles may not yet be available.

Note: To guarantee that the most current values are being used, the DM application should always query

the configuration at runtime by using dm_get_config.

6 GPFS: DMAPI Guide

Table 2 shows the attribute values that are used in GPFS:

 Table 2. DMAPI configuration attributes

Name Value

DM_CONFIG_BULKALL 1

DM_CONFIG_CREATE_BY_HANDLE 0

DM_CONFIG_DTIME_OVERLOAD 1

DM_CONFIG_LEGACY 1

DM_CONFIG_LOCK_UPGRADE 1

DM_CONFIG_MAX_ATTR_ON_DESTROY 1022

DM_CONFIG_MAX_ATTRIBUTE_SIZE 1022

DM_CONFIG_MAX_HANDLE_SIZE 32

DM_CONFIG_MAX_MANAGED_REGIONS 32

DM_CONFIG_MAX_MESSAGE_DATA 4096

DM_CONFIG_OBJ_REF 0

DM_CONFIG_PENDING 0

DM_CONFIG_PERS_ATTRIBUTES 1

DM_CONFIG_PERS_EVENTS 1

DM_CONFIG_PERS_INHERIT_ATTRIBS 0

DM_CONFIG_PERS_MANAGED_REGIONS 1

DM_CONFIG_PUNCH_HOLE 1

DM_CONFIG_TOTAL_ATTRIBUTE_SPACE 7168

DM_CONFIG_WILL_RETRY 0

Attribute value DM_CONFIG_TOTAL_ATTRIBUTE_SPACE is per file. The entire space is available for

opaque attributes. Non-opaque attributes (event list and managed regions) use separate space.

DMAPI restrictions for GPFS

All DMAPI APIs must be called from nodes that are in the cluster where the file system is created. DMAPI

APIs may not be invoked from a remote cluster.

In addition to the DMAPI API restriction listed above, GPFS places the following restrictions on the use of

file system snapshots when you have DMAPI enabled:

v Snapshots cannot coexist with file systems using GPFS 3.1 or earlier.

v GPFS 3.2 and later permits snapshots with DMAPI-enabled file systems. However, GPFS places the

following restrictions on DMAPI access to the snapshot files:

– The DM server may read files in a snapshot using dm_read_invis.

– The DM server is not allowed to modify or delete the file using dm_write_invis or dm_punch_hole.

– The DM server is not allowed to establish a managed region on the file.

– Snapshot creation or deletion does not generate DMAPI name space events.

– Snapshots of a file are not managed regardless of the state of the original file and they do not inherit

the DMAPI attributes of the original file.

Chapter 1. Overview of the Data Management API for GPFS 7

|

|
|

8 GPFS: DMAPI Guide

Chapter 2. Data Management API principles for GPFS

The XDSM standard is intended mainly for a single-node environment. Some of the key concepts in the

standard such as sessions, event delivery, mount and unmount, and failure and recovery, are not well

defined for a multiple node environment such as GPFS.

For a list of restrictions and coexistence considerations, see “Usage restrictions on DMAPI functions” on

page 20.

All DMAPI APIs must be called from nodes that are in the cluster where the file system is created.

Enhancements in the DMAPI model used in GPFS include these areas:

v “Sessions”

v “Events”

v “Mount and unmount” on page 11

v “Tokens and access rights” on page 12

v “Parallelism in Data Management applications” on page 13

v “Data Management attributes” on page 13

v “Support for NFS” on page 14

v “Quota” on page 14

v “Memory mapped files” on page 14

Sessions

In GPFS, a session is associated with a specific node, the node on which the session was created. This is

called the session node.

Events are generated at any node where the file system is mounted. The node on which a given event is

generated is called the source node of that event. The event is delivered to a session queue on the

session node.

There are restrictions as to which DMAPI functions can and cannot be called from a node other than the

session node. In general, functions that change the state of a session or event can only be called on the

session node. For example, the maximum number of DMAPI sessions that can be created on a node is

4000. See “Usage restrictions on DMAPI functions” on page 20 for details.

Session ids are unique over time within a GPFS cluster. When an existing session is assumed, using

dm_create_session, the new session id returned is the same as the old session id.

A session fails when the GPFS daemon fails on the session node. Unless this is a total failure of GPFS on

all nodes, the session is recoverable. The DM application is expected to assume the old session, possibly

on another node. This will trigger the reconstruction of the session queue. All pending synchronous events

from surviving nodes are resubmitted to the recovered session queue. Such events will have the same

token id as before the failure, except mount events. Asynchronous events, on the other hand, are lost

when the session fails. See Chapter 5, “Failure and recovery of Data Management API for GPFS,” on

page 29 for information on failure and recovery.

Events

Events arrive on a session queue from any of the nodes in the GPFS cluster.

© Copyright IBM Corp. 1998, 2008 9

The source node of the event is identified by the ev_nodeid field in the header of each event message in

the structure dm_eventmsg. The identification is the GPFS cluster data node number, which is attribute

node_number in the mmsdrfs2 file for a PSSP node or mmsdrfs file for any other type of node.

Data Management events are generated only if the following two conditions are true:

1. The event is enabled.

2. It has a disposition.

A file operation will fail with the EIO error if there is no disposition for an event that is enabled and would

otherwise be generated.

A list of enabled events can be associated individually with a file and globally with an entire file system.

The XDSM standard leaves undefined the situation where the individual and the global event lists are in

conflict. In GPFS, such conflicts are resolved by always using the individual event list, if it exists.

Note: The XDSM standard does not provide the means to remove the individual event list of a file. Thus,

there is no way to enable or disable an event for an entire file system without explicitly changing

each conflicting individual event list.

In GPFS, event lists are persistent.

Event dispositions are specified per file system and are not persistent. They must be set explicitly after the

session is created.

Event generation mechanisms have limited capacity. In case resources are exceeded, new file operations

will wait indefinitely for free resources.

File operations wait indefinitely for a response from synchronous events. The GPFS configuration option,

dmapiEventTimeout, can be used to set a timeout on events that originate from NFS file operations. This

is necessary since NFS have a limited number of server threads that cannot be blocked for long periods of

time. Refer to “GPFS configuration options for DMAPI” on page 16 and “Support for NFS” on page 14.

The XDSM standard permits asynchronous events to be discarded at any time. In GPFS, asynchronous

events are guaranteed when the system runs normally, but may be lost during abnormal conditions, such

as failure of GPFS on the session node. Asynchronous events are delivered in a timely manner. That is,

an asynchronous event is enqueued to the session before the corresponding file operation completes.

Figure 1 on page 11, shows the flow of a typical synchronous event in a multiple node GPFS environment.

The numbered arrows in the figure correspond to the following steps:

1. The user application on the source node performs a file operation on a GPFS file. The file operation

thread generates a synchronous event and blocks, waiting for a response.

2. GPFS on the source node sends the event to GPFS on the session node, according to the disposition

for that event. The event is enqueued to the session queue on the session node.

3. The Data Management application on the session node receives the event (using dm_get_events)

and handles it.

4. The Data Management application on the session node responds to the event (using

dm_respond_event).

5. GPFS on the session node sends the response to GPFS on the source node.

6. GPFS on the source node passes the response to the file operation thread and unblocks it. The file

operation continues.

10 GPFS: DMAPI Guide

Mount and unmount

The XDSM standard implicitly assumes that there is a single mount, pre-unmount and unmount event per

file system. In GPFS, a separate mount event is generated by each mount operation on each node.

Similarly, if the pre-unmount and unmount events are enabled, they are generated by each unmount

operation on each node. Thus, there may be multiple such events for the same file system.

To provide additional information to the DM application, the mode field in the respective event message

structures (me_mode for mount, and ne_mode for pre-unmount and unmount) has a new flag,

DM_LOCAL_MOUNT, which is not defined in the standard. When the flag is set, the mount or unmount

operation is local to the session node. In addition, the new field ev_nodeid in the header of the event

message can be used to identify the source node where the mount or unmount operation was invoked.

The identification is the GPFS cluster data node number, which is attribute node_number in the

mmsdrfs2 file for a PSSP node or mmsdrfs file for any other type of node.

The mount event is sent to multiple sessions that have a disposition for it. If there is no disposition for the

mount event, the mount operation fails with an EIO error.

There is no practical way to designate the last unmount, since there is no serialization of all mount and

unmount operations of each file system. Receiving an unmount event with the value 0 in the ne_retcode

field is no indication that there will be no further events from the file system.

An unmount initiated internally by the GPFS daemon, due to file system forced unmount or daemon

shutdown, will not generate any events. Consequently, there need not be a match between the number of

mount events and the number of pre-unmount or unmount events for a given file system.

The GPFS configuration option dmapiMountTimeout enables blocking the mount operation for a limited

time until some session has set the mount disposition. This helps synchronizing between GPFS and the

DM application during initialization. See “GPFS configuration options for DMAPI” on page 16 and

“Initializing the Data Management application” on page 17.

Mount events are enqueued on the session queue ahead of any other events. This gives mount events a

higher priority that improves the response time for mount events when the queue is very busy.

If the DM_UNMOUNT_FORCE flag is set in the pre-unmount event message, the response of the DM

application to the pre-unmount event is ignored, and the forced unmount proceeds in any case. If the

DM_LOCAL_MOUNT flag is also set, the forced unmount will result in loss of all access rights of the given

file system that are associated with any local session.

Figure 1. Flow of a typical synchronous event in multiple node GPFS

Chapter 2. Data Management API principles for GPFS 11

If the unmount is not forced (the DM_UNMOUNT_FORCE flag is not set), and the DM_LOCAL_MOUNT

flag is set, the DM application is expected to release all access rights on files of the given file system,

associated with any local session. If any access rights remain held after the DM_RESP_CONTINUE

response is given, the unmount will fail with EBUSY. This is since access rights render the file system

busy, similar to other locks on files.

The function dm_get_mountinfo can be called from any node, even if the file system is not mounted on

that node. The dm_mount_event structure returned by the dm_get_mountinfo function provides the

following enhanced information. The me_mode field contains two new flags, DM_LOCAL_MOUNT and

DM_REMOTE_MOUNT. At least one of the two flags is always set. When both flags are set

simultaneously, it is an indication that the file system is mounted on the local node, as well as one or more

other (remote) nodes. When only DM_LOCAL_MOUNT is set, it is an indication that the file system is

mounted on the local node but not on any other node. When only DM_REMOTE_MOUNT is set, it is an

indication that the file system is mounted on some remote node, but not on the local node.

In the latter case (only DM_REMOTE_MOUNT is set), the fields me_roothandle and me_handle2 (the

mount point handle) in the dm_mount_event structure are set to DM_INVALID_HANDLE. Also in this

case, the me_name1 field (the mount point path) is taken from the stanza in the file /etc/filesystems on

one of the remote nodes (with the use of GPFS cluster data, the stanzas on all nodes are identical).

The enhanced information provided by the dm_get_mountinfo function can be useful during the

processing of mount and pre-unmount events. For example, before responding to a mount event from a

remote (non-session) node, dm_get_mountinfo could be invoked to find out whether the file system is

already mounted locally at the session node, and if not, initiate a local mount. On receiving a pre-unmount

event from the local session node, it is possible to find out whether the file system is still mounted

elsewhere, and if so, fail the local unmount or delay the response until after all remote nodes have

unmounted the file system.

Note: The DM_REMOTE_MOUNT flag is redundant in the dm_mount_event structure obtained from the

mount event (as opposed to the dm_get_mountinfo function).

Tokens and access rights

A DMAPI token is an identifier of an outstanding event (a synchronous event that the DM application has

received and is currently handling). The token is unique over time in the cluster. The token becomes

invalid when the event receives a response.

The main purpose of tokens is to convey access rights in DMAPI functions. Access rights are associated

with a specific event token. A function requiring access rights to some file may present an event token that

has the proper access rights.

DMAPI functions can also be invoked using DM_NO_TOKEN, in which case sufficient access protection is

provided for the duration of the operation. This is semantically equivalent to holding an access right, but no

access right on the file is actually acquired.

In GPFS, when an event is received, it’s token has no associated access rights.

DM access rights are implemented in GPFS using an internal lock on the file. Access rights can be

acquired, changed, queried, and released only at the session node. This is an implementation restriction,

caused by the GPFS locking mechanisms.

In GPFS, it is not possible to set an access right on an entire file system, from the file system handle.

Thus, DMAPI function calls that reference a file system, using a file system handle, are not allowed to

present a token and must specify DM_NO_TOKEN. For the same reason, functions that acquire or change

access rights are not allowed to present a file system handle.

12 GPFS: DMAPI Guide

Holding access rights renders the corresponding file system busy at the session node, preventing normal

(non-forced) unmount. This behavior is similar to that of other locks on files. When receiving a

pre-unmount event, the DM application is expected to release all access rights before responding.

Otherwise, the unmount operation will fail, with an EBUSY error.

All access rights associated with an event token are released when the response is given. There is no

transfer of access rights from DMAPI to the file operation thread. The file operation will acquire any

necessary locks after receiving the response of the event.

Parallelism in Data Management applications

Given the multiple node environment of GPFS, it is desirable to exploit parallelism in the Data

Management application as well.

This can be accomplished in several ways:

v On a given session node, multiple DM application threads can access the same file in parallel, using the

same session. There is no limit on the number of threads that can invoke DMAPI functions

simultaneously on each node.

v Multiple sessions, each with event dispositions for a different file system, can be created on separate

nodes. Thus, files in different file systems can be accessed independently and simultaneously, from

different session nodes.

v Dispositions for events of the same file system can be partitioned among multiple sessions, each on a

different node. This distributes the management of one file system among several session nodes.

v Although GPFS routes all events to a single session node, data movement may occur on multiple

nodes. The function calls dm_read_invis, dm_write_invis, dm_probe_hole, and dm_punch_hole are

honored from a root process on another node, provided it presents a session ID for an established

session on the session node.

A DM application may create a worker process, which exists on any node within the GPFS cluster. This

worker process can move data to or from GPFS using the dm_read_invis and dm_write_invis

functions. The worker processes must adhere to these guidelines:

1. They must run as root.

2. They must present a valid session ID, which was obtained on the session node.

3. All writes to the same file which are done in parallel must be done in multiples of the file system

block size, to allow correct management of disk blocks on the writes.

4. No DMAPI calls other than dm_read_invis, dm_write_invis, dm_probe_hole, and

dm_punch_hole may be issued on nodes other than the session node. This means that any rights

required on a file must be obtained within the session on the session node, prior to the data

movement.

5. There is no persistent state on the nodes hosting the worker process. It is the responsibility of the

DM application to recover any failure which results from the failure of GPFS or the data movement

process.

Data Management attributes

Data Management attributes can be associated with any individual file. There are opaque and non-opaque

attributes.

An opaque attribute has a unique name, and a byte string value which is not interpreted by the DMAPI

implementation. Non-opaque attributes, such as managed regions and event lists, are used internally by

the DMAPI implementation.

DM attributes are persistent. They are kept in a hidden file in the file system.

Chapter 2. Data Management API principles for GPFS 13

GPFS provides two quick access single-bit opaque DM attributes for each file, stored directly in the inode.

These attributes are accessible through regular DMAPI functions, by specifying the reserved attribute

names _GPFSQA1 and _GPFSQA2 (where _GPF is a reserved prefix). The attribute data must be a

single byte with contents 0 or 1.

Support for NFS

A DM application could be slow in handling events. NFS servers have a limited number of threads which

must not all be blocked simultaneously for extended periods of time. GPFS provides a mechanism to

guarantee progress of NFS file operations that generate data events without blocking the server threads

indefinitely.

The mechanism uses a timeout on synchronous events. Initially the NFS server thread is blocked on the

event. When the timeout expires, the thread unblocks and the file operation fails with an ENOTREADY

error code. The event itself continues to exist and will eventually be handled. When a response for the

event arrives at the source node it is saved. NFS is expected to periodically retry the operation. The retry

will either find the response which has arrived between retries, or cause the operation to fail again with

ENOTREADY. After repeated retries, the operation is eventually expected to succeed.

The interval is configurable using the GPFS configuration option dmapiEventTimeout. See “GPFS

configuration options for DMAPI” on page 16. The default is no timeout.

The timeout mechanism is activated only for data events (read, write, truncate), and only when the file

operation comes from NFS.

Quota

GPFS supports user quota. When dm_punch_hole is invoked, the file owner’s quota is adjusted by the

disk space that is freed. The quota is also adjusted when dm_write_invis is invoked and additional disk

space is consumed.

Since dm_write_invis runs with root credentials, it will never fail due to insufficient quota. However, it is

possible that the quota of the file owner will be exceeded as a result of the invisible write. In that case the

owner will not be able to perform further file operations that consume quota.

Memory mapped files

In GPFS, a read event or a write event will be generated (if enabled) at the time the memory mapping of a

file is established.

No events will be generated during actual mapped access, regardless of the setting of the event list or the

managed regions. Access to the file with regular file operations, while the file is memory mapped, will

generate events, if such events are enabled.

To protect the integrity of memory mapped access, the DM application is not permitted to punch a hole in

a file while the file is memory mapped. If the DM application calls dm_punch_hole while the file is

memory mapped, the error code EBUSY will be returned.

14 GPFS: DMAPI Guide

Chapter 3. Administering the Data Management API for GPFS

To set up the DMAPI for GPFS, install the DMAPI files that are included in the GPFS installation package,

and then choose configuration options for DMAPI with the mmchconfig command. For each file system

that you want DMAPI access, enable DMAPI with the -z flag of the mmcrfs or mmchfs command.

All DMAPI APIs must be called from nodes that are in the cluster where the file system is created. DMAPI

APIs may not be invoked from a remote cluster. The GPFS daemon and each DMAPI application must be

synchronized to prevent failures.

Administering the Data Management API for GPFS includes:

v “Required files for implementation of Data Management applications”

v “GPFS configuration options for DMAPI” on page 16

v “Enabling DMAPI for a file system” on page 17

v “Initializing the Data Management application” on page 17

Required files for implementation of Data Management applications

The installation image for GPFS contains the required files for implementation of Data Management

applications.

For more information about GPFS installation, see the General Parallel File System: Concepts, Planning,

and Installation Guide.

The required files are:

dmapi.h

The header file that contains the C declarations of the DMAPI functions.

 This header file must be included in the source files of the DM application.

The file is installed in directory: /usr/lpp/mmfs/include.

dmapi_types.h

The header file that contains the C declarations of the data types for the DMAPI functions and

event messages.

 The header file dmapi.h includes this header file.

The file is installed in directory: /usr/lpp/mmfs/include.

libdmapi.a

The library that contains the DMAPI functions.

 The library libdmapi.a consists of a single shared object, which is built with auto-import of the

system calls that are listed in the export file dmapi.exp.

The file is installed in directory: /usr/lpp/mmfs/lib.

dmapi.exp

The export file that contains the DMAPI system call names.

 The file dmapi.exp needs to be explicitly used only if the DM application is to be explicitly built

with static binding, using the binder options -bnso -bI:dmapi.exp.

The file is installed in directory: /usr/lpp/mmfs/lib.

dmapicalls

Module loaded during processing of the DMAPI functions.

 The module is installed in directory: /usr/lpp/mmfs/bin

© Copyright IBM Corp. 1998, 2008 15

Note:

v If you are compiling with a non-IBM compiler on AIX nodes, you must compile DMAPI

applications with -D_AIX.

v On Linux nodes running DMAPI, the file libdmapi.so replaces libdmapi.a, dmapi.exp, and

dmapicalls in the list of required files above.

GPFS configuration options for DMAPI

GPFS uses several options for DMAPI that define various timeout intervals. These options can be

changed with the mmchconfig command.

The DMAPI configuration options are:

dmapiEventTimeout

Controls the blocking of file operation threads of NFS, while in the kernel waiting for the handling

of a DMAPI synchronous event. The parameter value is the maximum time, in milliseconds, the

thread will block. When this time expires, the file operation returns ENOTREADY, and the event

continues asynchronously. The NFS server is expected to repeatedly retry the operation, which

eventually will find the response of the original event and continue. This mechanism applies only

to read, write, and truncate events, and only when such events come from NFS server threads.

 The timeout value is given in milliseconds. The value 0 indicates immediate timeout (fully

asynchronous event). A value greater than or equal to 86400000 (which is 24 hours) is considered

’infinity’ (no timeout, fully synchronous event). The default value is 86400000. See also “Support

for NFS” on page 14.

dmapiMountEvent

Controls the generation of the mount, preunmount, and unmount events. Valid values are:

all mount, preunmount, and unmount events are generated on each node. This is the

default behavior.

SessionNode

mount, preunmount, and unmount events are generated on each node and are

delivered to the session node, but the session node will not deliver the event to the

DMAPI application unless the event is originated from the SessionNode itself.

LocalNode

mount, preunmount, and unmount events are generated only if the node is a session

node.

dmapiFileHandleSize

Controls the size of file handles generated by GPFS. For a new cluster, the default DMAPI file

handle size is 32 bytes. For existing clusters, the default DMAPI file handle size is 16 bytes. After

all of the nodes in the cluster are upgraded to at least GPFS 3.2 and you have also run the

mmchconfig release=LATEST command, then you can change the file handle size to 32 bytes by

issuing the command: mmchconfig dmapiFileHandleSize=32.

Note: To change the DMAPI file handle size, GPFS must be stopped on all nodes in the cluster.

dmapiSessionFailureTimeout

Controls the blocking of file operation threads, while in the kernel, waiting for the handling of a

DMAPI synchronous event that is enqueued on a session that has suffered a failure. The

parameter value is the maximum time, in seconds, the thread will wait for the recovery of the failed

session. When this time expires and the session has not yet recovered, the event is aborted and

the file operation fails, returning the EIO error.

 The timeout value is given in full seconds. The value 0 indicates immediate timeout (immediate

failure of the file operation). A value greater than or equal to 86400 (which is 24 hours) is

16 GPFS: DMAPI Guide

|
|

||
|

|
|
|
|

|
|
|

|

considered ’infinity’ (no timeout, indefinite blocking until the session recovers). The default value is

0. See also Chapter 5, “Failure and recovery of Data Management API for GPFS,” on page 29 for

details on session failure and recovery.

dmapiMountTimeout

Controls the blocking of mount operations, waiting for a disposition for the mount event to be set.

This timeout is activated at most once on each node, by the first mount of a file system which has

DMAPI enabled, and only if there has never before been a mount disposition. Any mount operation

on this node that starts while the timeout period is active will wait for the mount disposition. The

parameter value is the maximum time, in seconds, that the mount operation will wait for a

disposition. When this time expires and there still is no disposition for the mount event, the mount

operation fails, returning the EIO error.

 The timeout value is given in full seconds. The value 0 indicates immediate timeout (immediate

failure of the mount operation). A value greater than or equal to 86400 (which is 24 hours) is

considered ’infinity’ (no timeout, indefinite blocking until there is a disposition). The default value is

60. See also “Mount and unmount” on page 11 and “Initializing the Data Management application.”

For more information about the mmchonfig command, see the General Parallel File System:

Administration and Programming Reference.

Enabling DMAPI for a file system

DMAPI must be enabled individually for each file system.

DMAPI can be enabled for a file system when the file system is created, using the -z yes option on the

mmcrfs command. The default is -z no. The setting can be changed when the file system is not mounted

anywhere, using the -z yes|no option on the mmchfs command. The setting is persistent.

The current setting can be queried using the -z option on the mmlsfs command.

While DMAPI is disabled for a given file system, no events are generated by file operations of that file

system. Any DMAPI function calls referencing that file system fail with an EPERM error.

When mmchfs -z no is used to disable DMAPI, existing event lists, extended attributes, and managed

regions in the given file system remain defined, but will be ignored until DMAPI is re-enabled. The

command mmchfs -z no should be used with caution, since punched holes, if any, are no longer

protected by managed regions.

If the file system was created with a release of GPFS earlier than GPFS 1.3, the file system descriptor

must be upgraded before attempting to enable DMAPI. The upgrade is done using the -V option on the

mmchfs command.

For more information about GPFS commands, see the General Parallel File System: Administration and

Programming Reference.

Initializing the Data Management application

All DMAPI APIs must be called from nodes that are in the cluster where the file system is created. DMAPI

APIs may not be invoked from a remote cluster.

During initialization of GPFS, it is necessary to synchronize the GPFS daemon and the DM application to

prevent mount operations from failing. There are two mechanisms to accomplish this:

1. The shell script gpfsready invoked by the GPFS daemon during initialization.

2. A timeout interval, allowing mount operations to wait for a disposition to be set for the mount event.

Chapter 3. Administering the Data Management API for GPFS 17

During GPFS initialization, the daemon invokes the shell script gpfsready, located in directory

/var/mmfs/etc. This occurs as the file systems are starting to be mounted. The shell script can be

programmed to start or restart the DM application. Upon return from this script, a session should have

been created and a disposition set for the mount event. Otherwise, mount operations may fail due to a

lack of disposition.

In a multinode environment such as GPFS, usually only a small subset of the nodes are session nodes,

having DM applications running locally. On a node that is not a session node, the gpfsready script can be

programmed to synchronize between the local GPFS daemon and a remote DM application. This will

prevent mount from failing on any node.

A sample shell script gpfsready.sample is installed in directory /usr/lpp/mmfs/samples.

If no mount disposition has ever been set in the cluster, the first external mount of a DMAPI-enabled file

system on each node will activate a timeout interval on that node. Any mount operation on that node that

starts during the timeout interval will wait for the mount disposition until the timeout expires. The timeout

interval is configurable, using the GPFS configuration option dmapiMountTimeout (the interval can even

be made infinite). A message is displayed at the beginning of the wait. If there is still no disposition for the

mount event when the timeout expires, the mount operation will fail with an EIO error code. See “GPFS

configuration options for DMAPI” on page 16 for more information on dmapiMountTimeout.

18 GPFS: DMAPI Guide

|

Chapter 4. Specifications of enhancements in the GPFS

implementation of Data Management API

The GPFS implementation of DMAPI provides numerous enhancements in data structures and functions.

These enhancements are provided mainly by the multiple node environment. Some data structures have

additional fields. Many functions have usage restrictions, changes in semantics, and additional error codes.

The enhancements are in these areas:

v “Enhancements to data structures”

v “Usage restrictions on DMAPI functions” on page 20

v “Definitions for GPFS specific DMAPI functions” on page 22

v “Semantic changes to DMAPI functions” on page 24

v “GPFS-specific DMAPI events” on page 26

v “Additional error codes returned by DMAPI functions” on page 26

Enhancements to data structures

This is a description of GPFS enhancements to data structures defined in the XDSM standard.

For complete C declarations of all DMAPI data structures that are used in the GPFS implementation of

DMAPI, refer to the dmapi_types.h file located in the /usr/lpp/mmfs/include directory as part of the

GPFS installation.

v All file offsets and sizes in DMAPI data structures are 64 bits long.

v Names or path names that are passed in event messages are character strings, terminated by a null

character. The length of the name buffer, as specified in the dm_vardata_t structure, includes the null

character.

v The dm_region_t structure has a new 4-byte field, rg_opaque. The DMAPI implementation does not

interpret rg_opaque. The DM application can use this field to store additional information within the

managed region.

v The dt_change field in the dm_stat structure is not implemented in the inode. The value will change

each time it is returned by the dm_get_fileattr function.

v The dt_dtime field in the dm_stat structure is overloaded on the dt_ctime field.

v The dm_eventmsg structure has a 4 byte field, ev_nodeid that uniquely identifies the node that

generated the event. The id is the GPFS cluster data node number, which is attribute node_number in

the mmsdrfs2 file for a PSSP node or mmsdrfs file for any other type of node.

v The ne_mode field in the dm_namesp_event structure has an additional flag, DM_LOCAL_MOUNT.

For the events preunmount and unmount when this flag is set, the unmount operation is local to the

session node. See “Mount and unmount” on page 11.The me_mode field in the dm_mount_event

structure has two additional flags; DM_LOCAL_MOUNT, and DM_REMOTE_MOUNT. See “Mount and

unmount” on page 11.

v There are two ’quick access’ single-bit opaque DM attributes for each file, stored directly in the inode.

See “Data Management attributes” on page 13.

v The data type dm_eventset_t is implemented as a bit map, containing one bit for each event that is

defined in DMAPI. The bit is set if, and only if, the event is present.

Variables of type dm_eventset_t should be manipulated only using special macros. The XDSM

standard provides a basic set of such macros. GPFS provides a number of additional macros. The

names of all such macros begin with the prefix DMEV_.

This is the list of additional macros that are provided by the GPFS implementation of DMAPI:

© Copyright IBM Corp. 1998, 2008 19

|

DMEV_ALL(eset)

Add all events to eset

DMEV_ISZERO(eset)

Check if eset is empty

DMEV_ISALL(eset)

Check if eset contains all events

DMEV_ADD(eset1, eset2)

Add to eset2 all events in eset1

DMEV_REM(eset1, eset2)

Remove from eset2 all events in eset1

DMEV_RES(eset1, eset2)

Restrict eset2 by eset1

DMEV_ISEQ(eset1, eset2)

Check if eset1 and eset2 are equal

DMEV_ISDISJ(eset1, eset2)

Check if eset1 and eset2 are disjoint

DMEV_ISSUB(eset2)

Check if eset1 is a subset of eset2

DMEV_NORM(eset)

Normalize the internal format of eset, clearing all unused bits.

v GPFS provides a set of macros for comparison of token ids (value of type dm_token_t).

DM_TOKEN_EQ (x,y)

Check if x and y are the same

DM_TOKEN_NE (x,y)

Check if x and y are different

DM_TOKEN_LT (x,y)

Check if x is less than y

DM_TOKEN_GT (x,y)

Check if x is greater than y

DM_TOKEN_LE (x,y)

Check if x is less than or equal to y

DM_TOKEN_GE (x,y)

Check if x is greater than or equal to y

Usage restrictions on DMAPI functions

There are usage restrictions on DMAPI functions in the GPFS implementation.

For additional information about:

v Semantic changes to DMAPI functions in GPFS, see “Semantic changes to DMAPI functions” on page

24.

v C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer to the dmapi.h file

located in the /usr/lpp/mmfs/include directory as part of the GPFS installation.

v The maximum number of DMAPI sessions that can be created on a node is 4000.

v Root credentials are a prerequisite for invoking any DMAPI function, otherwise the function fails with an

EPERM error code.

20 GPFS: DMAPI Guide

|

v DMAPI functions are unable to run if the GPFS kernel extension is not loaded, or if the runtime module

dmapicalls is not installed. An ENOSYS error code is returned in this case.

v Invoking a DMAPI function that is not implemented in GPFS results in returning the ENOSYS error

code.

v DMAPI functions will fail, with the ENOTREADY error code, if the local GPFS daemon is not running.

v DMAPI functions will fail, with the EPERM error code, if DMAPI is disabled for the file system that is

referenced by the file handle argument.

v DMAPI functions cannot access GPFS reserved files, such as quota files, inode allocation maps, and so

forth. The EBADF error code is returned in this case.

v GPFS does not support access rights on entire file systems (as opposed to individual files). Hence,

DMAPI function calls that reference a file system (with a file system handle) cannot present a token,

and must use DM_NO_TOKEN. Functions affected by this restriction are:

– dm_set_eventlist

– dm_get_eventlist

– dm_set_disp

– dm_get_mountinfo

– dm_set_return_on_destroy

– dm_get_bulkattr

– dm_get_bulkall

If a token is presented, these functions fail with the EINVAL error code.

v DMAPI functions that acquire, change, query, or release access rights, must not present a file system

handle. These functions are:

– dm_request_right

– dm_upgrade_right

– dm_downgrade_right

– dm_release_right

– dm_query_right

If a file system handle is presented, these functions fail with the EINVAL error code.

v The function dm_request_right, when invoked without wait (the flags argument has a value of 0), will

almost always fail with the EAGAIN error. A GPFS implementation constraint prevents this function from

completing successfully without wait, even if it is known that the requested access right is available. The

DM_RR_WAIT flag must always be used. If the access right is available, there will be no noticeable

delay.

v DMAPI function calls that reference a specific token, either as input or as output, can be made only on

the session node. Otherwise, the call fails with the EINVAL error code.

v DMAPI function calls that reference an individual file by handle must be made on the session node. The

corresponding file system must be mounted on the session node. The call fails with EINVAL if it is not

on the session node, and with EBADF if the file system is not mounted.

v DMAPI function calls that reference a file system by handle (as opposed to an individual file) can be

made on any node, not just the session node. The relevant functions are:

– dm_set_eventlist

– dm_get_eventlist

– dm_set_disp

– dm_get_mountinfo

– dm_set_return_on_destroy

– dm_get_bulkattr

– dm_get_bulkall

Chapter 4. Specifications of enhancements in the GPFS implementation of Data Management API 21

For dm_get_bulkattr and dm_get_bulkall, the system file must be mounted on the node that is making

the call. For the other functions, the file system must be mounted on some node, but not necessarily on

the node that is making the call. As specified previously, all such function calls must use

DM_NO_TOKEN. The function fails with the EBADF error code if the file system is not mounted as

required.

v The function dm_punch_hole will fail with the EBUSY error code if the file to be punched is currently

memory-mapped.

v The function dm_move_event can only be used when the source session and the target session are on

the same node. The function must be called on the session node. Otherwise, the function fails with the

EINVAL error code.

v The function dm_create_session, when providing an existing session id in the argument oldsid, can

only be called on the session node, except after session node failure. Otherwise, the call will return the

EINVAL error code.

v The function dm_destroy_session can only be called on the session node, otherwise the call will fail

with the EINVAL error code.

v The function dm_set_fileattr cannot change the file size. If the dm_at_size bit in the attribute mask is

set, the call fails with the EINVAL error code.

v DMAPI functions that reference an event with a token fail with the ESRCH error code, if the event is not

in an outstanding state. This is related to session recovery. See Chapter 5, “Failure and recovery of

Data Management API for GPFS,” on page 29 for details on session failure and recovery.

Definitions for GPFS specific DMAPI functions

GPFS provides functions that are not part of the DMAPI open standard. GPFS uses these functions to

work with file system snapshots when you have enabled DMAPI.

For specific information about each function, refer to:

v “dm_handle_to_snap”

v “dm_make_xhandle” on page 23

dm_handle_to_snap

Use the dm_handle_to_snap function to extract a snapshot ID from a handle. dm_handle_to_snap() is a

GPFS specific DMAPI function. It is not part of the open standard.

Synopsis

int dm_handle_to_snap(

 void *hanp, /* IN */

 size_t hlen, /* IN */

 dm_snap_t *isnapp /* OUT */

);

Parameters

void *hanp (IN)

A pointer to an opaque DM handle previously returned by DMAPI.

size_t hlen (IN)

The length of the handle in bytes.

dm_snap_t *isnapp (OUT)

A pointer to the snapshot ID.

22 GPFS: DMAPI Guide

Return values

Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the following

values:

[EBADF]

The file handle does not refer to an existing or accessible object.

[EFAULT]

The system detected an invalid address in attempting to use an argument.

[EINVAL]

The argument token is not a valid token.

[ENOMEM]

DMAPI could not obtain the required resources to complete the call.

[ENOSYS]

Function is not supported by the DM implementation.

[EPERM]

The caller does not hold the appropriate privilege.

See also

“dm_make_xhandle”

dm_make_xhandle

Use the dm_make_xhandle() function to convert a file system ID, inode number, inode generation count,

and snapshot ID into a handle. dm_make_xhandle() is a GPFS specific DMAPI function. It is not part of

the open standard.

Synopsis

int

dm_make_xhandle(

 dm_fsid_t *fsidp, /* IN */

 dm_ino_t *inop, /* IN */

 dm_igen_t *igenp, /* IN */

 dm_snap_t *isnapp, /* IN */

 void **hanpp, /* OUT */

 size_t *hlenp /* OUT */

);

Parameters

dm_fsid_t *fsidp (IN)

The file system ID.

dm_ino_t *inop (IN)

The inode number.

dm_snap_t *isnapp (IN)

The snapshot ID.

dm_igen_t *igenp (IN)

The inode generation count.

void **hanpp (OUT)

A DMAPI initialized pointer that identifies a region of memory containing an opaque DM handle.

The caller is responsible for freeing the allocated memory.

size_t *hlenp (OUT)

The length of the handle in bytes.

Chapter 4. Specifications of enhancements in the GPFS implementation of Data Management API 23

Return values

Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the following

values:

[EBADF]

The file handle does not refer to an existing or accessible object.

[EFAULT]

The system detected an invalid address in attempting to use an argument.

[EINVAL]

The argument token is not a valid token.

[ENOMEM]

DMAPI could not obtain the required resources to complete the call.

[ENOSYS]

Function is not supported by the DM implementation.

[EPERM]

The caller does not hold the appropriate privilege.

See also

“dm_handle_to_snap” on page 22

Semantic changes to DMAPI functions

There are semantic changes to DMAPI functions in GPFS. These changes are entailed mostly by the

multiple node environment.

For a list of additional error codes that are used in the GPFS implementation of DMAPI, see “Additional

error codes returned by DMAPI functions” on page 26. For C declarations of all DMAPI functions in the

GPFS implementation of DMAPI, refer to the dmapi.h file located in the /usr/lpp/mmfs/include directory

as part of the GPFS installation.

v The following DMAPI functions can be invoked on any node, not just the session node, as long as the

session exists on some node in the GPFS cluster.

– dm_getall_disp

– dm_query_session

– dm_send_msg

v DMAPI functions that reference a file system, as opposed to an individual file, can be made on any

node, not just the session node. Being able to call certain functions on any node has advantages. The

DM application can establish event monitoring when receiving a mount event from any node. Also, a

distributed DM application can change event lists and dispositions of any file system from any node.

– dm_set_eventlist

– dm_get_eventlist

– dm_set_disp

– dm_get_mount_info

– dm_set_return_on_destroy

– dm_get_bulkattr

– dm_get_bulkall

v The following functions, that construct a handle from its components, do not check if the resulting

handle references a valid file. Validity is checked when the handle is presented in function calls that

actually reference the file.

24 GPFS: DMAPI Guide

|

– dm_make_handle

– dm_make_fshandle

– dm_make_xhandle

v The following data movement functions may be invoked on any node within the GPFS cluster, provided

they are run as root and present a session ID for an established session on the session node. For

guidelines on how to perform data movement from multiple nodes, see “Parallelism in Data

Management applications” on page 13.

– dm_read_invis

– dm_write_invis

– dm_probe_hole

– dm_punch_hole

v The following functions that extract components of the handle, do not check whether the specified

handle references a valid file. Validity is checked when the handle is presented in function calls that

actually reference the file.

– dm_handle_to_fsid

– dm_handle_to_igen

– dm_handle_to_ino

– dm_handle_to_snap

v dm_handle_to_fshandle converts a file handle to a file system handle without checking the validity of

either handle.

v dm_handle_is_valid does not check if the handle references a valid file. It verifies only that the internal

format of the handle is correct.

v dm_init_attrloc ignores all of its arguments, except the output argument locp. In the GPFS

implementation of DMAPI, the location pointer is initialized to a constant. Validation of the session,

token, and handle arguments is done by the bulk access functions.

v When dm_query_session is called on a node other than the session node, it returns only the first eight

bytes of the session information string.

v dm_create_session can be used to move an existing session to another node, if the current session

node has failed. The call must be made on the new session node. See Chapter 5, “Failure and recovery

of Data Management API for GPFS,” on page 29 for details on session node failure and recovery.

v Assuming an existing session using dm_create_session does not change the session id. If the

argument sessinfop is NULL, the session information string is not changed.

v The argument maxevent in the functions dm_set_disp and dm_set_eventlist is ignored. In GPFS the

set of events is implemented as a bitmap, containing a bit for each possible event.

v The value pointed to by the argument nelemp, on return from the functions dm_get_eventlist and

dm_get_config_events, is always DM_EVENT_MAX-1. The argument nelem in these functions is

ignored.

v The field dt_nevents in the structure dm_stat_t, returned by the functions dm_get_fileattr and

dm_get_bulkall, always has the value DM_EVENT_MAX-1.

v The functions dm_get_config and dm_get_config_events ignore the arguments hanp and hlen. This

is because the configuration is not dependent on the specific file or file system.

v The function dm_set_disp, when called with the global handle, ignores any events in the event set

being presented, except the mount event. When dm_set_disp is called with a file system handle, it

ignores the mount event.

v The function dm_handle_hash, when called with an individual file handle, returns the inode number of

the file. When dm_handle_hash is called with a file system handle, it returns the value 0.

v The function dm_get_mountinfo returns two additional flags in the me_mode field in the

dm_mount_event structure. The flags are DM_MOUNT_LOCAL and DM_MOUNT_REMOTE. See

“Mount and unmount” on page 11 for details.

Chapter 4. Specifications of enhancements in the GPFS implementation of Data Management API 25

GPFS-specific DMAPI events

GPFS provides events that are not part of the DMAPI open standard. You can use these GPFS events to

filter out events that are not critical to file management and to prevent system overloads from trivial

information.

The DMAPI standard specifies that the system must generate ATTRIBUTE events each time the ″changed

time″ (ctime) attribute for a file changes. For systems like GPFS that write files in parallel, this generates

ATTRIBUTE events from every node writing to the file. Consequently, it is easy for ATTRIBUTE events to

overwhelm a data management server. However, the only ctime changes that are critical to GPFS are

changes to either the permissions or ACLs of a file. In most cases, GPFS can ignore other ctime changes.

To distinguish file permission and ACL changes from other ctime updates, the following DMAPI metadata

attribute events allow GPFS to filter ctime updates. Using these events, DM servers are able to track file

permission changes without overwhelming the system with irrelevant ATTRIBUTE events. However, these

events are not part of the CAE Specification C429 open standard and they were implemented specifically

for GPFS 3.2 systems. Systems using GPFS 3.1 (or earlier versions) cannot enable or generate these

events.

Metadata Events

DM_EVENT_PREPERMCHANGE

Pre-permission change event. Event is triggered before file permission change.

DM_EVENT_POSTPERMCHANGE

Post-permission change event. Event is triggered after file permission change.

Note:

1. All nodes on your system must be running GPFS 3.2 or later. Mixed clusters and clusters with

previous versions of GPFS will experience unexpected results if you enable these events.

2. If you only want to track permission and ACL changes, turn off the DM_EVENT_ATTRIBUTE

and turn on both the DM_EVENT_PREPERMCHANGE and DM_EVENT_POSTPERMCHANGE

events.

Additional error codes returned by DMAPI functions

The GPFS implementation of DMAPI uses additional error codes, not specified in the XDSM standard, for

most DMAPI functions.

For C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer to the dmapi.h file

located in the /usr/lpp/mmfs/include directory as part of the GPFS installation.

For all DMAPI functions, these error codes are used:

ENOSYS

The GPFS kernel extension is not loaded, or the runtime module dmapicalls is not installed.

ENOSYS

An attempt has been made to invoke a DMAPI function that is not implemented in GPFS.

ENOTREADY

The local GPFS daemon is not running or is initializing.

ENOMEM

DMAPI could not acquire the required resources to complete the call. ENOMEM is defined in the

XDSM standard for some DMAPI functions, but not for all.

ESTALE

An error has occurred which does not fit any other error code specified for this function.

26 GPFS: DMAPI Guide

|

|

For DMAPI functions that provide a file handle as an input argument, these error codes are used:

EINVAL

The format of the file handle is not valid.

 This error is returned without attempting to locate any object that is referenced by the handle. The

EINVAL error code is to be distinguished from the EBADF error code, which, as specified in the

XDSM standard, indicates that the object does not exist or is inaccessible. Thus, GPFS provides a

refinement, distinguishing between format and access errors related to handles.

EPERM

DMAPI is disabled for the file system that is referenced by the file handle.

For DMAPI functions that provide a token as an input argument, these error codes are used:

ESRCH

The event referenced by the token is not in outstanding state.

 This is to be distinguished from the EINVAL error code, which is returned when the token itself is

not valid. ESRCH is defined in the XDSM standard for some DMAPI functions, but not for all

relevant functions. In GPFS, the ESRCH error code occurs mostly after recovery from session

failure. See “Event recovery” on page 31 for details

For these specific DMAPI functions, the error code listed is used:

Name of function

Error code

dm_downgrade_right() dm_upgrade_right()

EINVAL - The session or token is not valid.

dm_get_region()

EPERM - The caller does not hold the appropriate privilege.

dm_init_service()

EFAULT - The system detected an invalid address in attempting to use an argument.

dm_move_event() dm_respond_event()

EINVAL - The token is not valid.

dm_punch_hole()

EBUSY - The file is currently memory mapped.

dm_probe_hole() dm_punch_hole()

EINVAL - The argument len is too large, and will overflow if cast into offset_t.

 EINVAL - The argument off is negative.

dm_write_invis()

EINVAL - The argument flags is not valid.

dm_read_invis() dm_write_invis()

EINVAL - The argument len is too large, and will overflow if placed into the uio_resid field in the

structure uio.

 EINVAL - The argument off is negative.

dm_sync_by_handle()

EROFS - The operation is not allowed on a read-only file system.

dm_find_eventmsg() dm_get_bulkall() dm_get_bulkattr() dm_get_dirattrs() dm_get_events()

dm_get_mountinfo() dm_getall_disp() dm_getall_dmattr() dm_handle_to_path()

EINVAL - The argument buflen is too large; it must be smaller than INT_MAX.

Chapter 4. Specifications of enhancements in the GPFS implementation of Data Management API 27

dm_get_alloc_info() dm_getall_sessions() dm_getall_tokens()

EINVAL - The argument nelem is too large; DMAPI cannot acquire sufficient resources.

28 GPFS: DMAPI Guide

Chapter 5. Failure and recovery of Data Management API for

GPFS

Failure and recovery of DMAPI applications in the multiple-node GPFS environment is different than in a

single-node environment, which is assumed in the XDSM standard.

The failure model in XDSM is intended for a single-node system. In this model, there are two types of

failures:

DM application failure

The DM application has failed, but the file system works normally. Recovery entails restarting the

DM application, which then continues handling events. Unless the DM application recovers, events

may remain pending indefinitely.

Total system failure

The file system has failed. All non-persistent DMAPI resources are lost. The DM application itself

may or may not have failed. Sessions are not persistent, so recovery of events is not necessary.

The file system cleans its state when it is restarted. There is no involvement of the DM application

in such cleanup.

The simplistic XDSM failure model is inadequate for GPFS. Being a multiple node environment, GPFS

may fail on one node, but survive on other nodes. This type of failure is called single-node failure (or

partial system failure). GPFS is built to survive and recover from single-node failures, without meaningfully

affecting file access on surviving nodes.

Designers of Data Management applications for GPFS must comply with the enhanced DMAPI failure

model, in order to support recoverability of GPFS. These areas are addressed:

v “Single-node failure”

v “Session failure and recovery” on page 30

v “Event recovery” on page 31

v “Loss of access rights” on page 31

v “DM application failure” on page 32

Single-node failure

For the GPFS implementation of DMAPI, single-node failure means that DMAPI resources are lost on the

failing node, but not on any other node.

The most common single-node failure is when the local GPFS daemon fails. This renders any GPFS file

system at that node inaccessible. Another possible single-node failure is file system forced unmount. When

just an individual file system is forced unmounted on some node, its resources are lost, but the sessions

on that node, if any, survive.

Single-node failure has a different effect when it occurs on a session node or on a source node:

session node failure

When the GPFS daemon fails, all session queues are lost, as well as all nonpersistent local file

system resources, particularly DM access rights. The DM application may or may not have failed.

The missing resources may in turn cause DMAPI function calls to fail with errors such as

ENOTREADY or ESRCH.

 Events generated at other source nodes remain pending despite any failure at the session node.

Moreover, client threads remain blocked on such events.

© Copyright IBM Corp. 1998, 2008 29

source node failure

Events generated by that node are obsolete. If such events have already been enqueued at the

session node, the DM application will process them, even though this may be redundant since no

client is waiting for the response.

According to the XDSM standard, sessions are not persistent. This is inadequate for GPFS. Sessions must

be persistent to the extent of enabling recovery from single-node failures. This is in compliance with a

basic GPFS premise, whereby single-node failures do not affect file access on surviving nodes.

Consequently, after session node failure, the session queue and the events on it must be reconstructed,

possibly on another node.

Session recovery is triggered by the actions of the DM application. The scenario depends on whether or

not the DM application itself has failed.

If the DM application has failed, it must be restarted, possibly on another node, and assume the old

session by id. This will trigger reconstruction of the session queue and the events on it, using backup

information replicated on surviving nodes. The DM application may then continue handling events. The

session id is never changed when a session is assumed.

If the DM application itself survives, it will notice that the session has failed by getting certain error codes

from DMAPI function calls (ENOTREADY, ESRCH). The application could then be moved to another node

and recover the session queue and events on it. Alternatively, the application could wait for the GPFS

daemon to recover. There is also a possibility that the daemon will recover before the DM application even

notices the failure. In these cases, session reconstruction is triggered when the DM application invokes the

first DMAPI function after daemon recovery.

Session failure and recovery

A session fails when the GPFS daemon of the session node fails.

Session failure results in loss of all DM access rights associated with events on the queue, and all the

tokens become invalid. After the session has recovered, any previously outstanding synchronous events

return to the initial (non-outstanding) state, and must be received again.

Session failure may also result in partial loss of the session information string. In such case, GPFS will be

able to restore only the first eight characters of the session string. It is suggested to not have the DM

application be dependent on more than eight characters of the session string.

In extreme situations, failure may also result in loss of event dispositions for some file system. This

happens only if the GPFS daemon fails simultaneously on all nodes where the file system was mounted.

When the file system is remounted, a mount event will be generated, at which point the dispositions could

be reestablished by the DM application.

During session failure, events originating from surviving nodes remain pending, and client threads remain

blocked on such events. It is therefore essential that the DM application assume the old session and

continue processing the pending events. To prevent indefinite blocking of clients, a mechanism has been

implemented whereby pending events will be aborted and corresponding file operations failed with the EIO

error if the failed session is not recovered within a specified time-out interval. The interval is configurable

using the GPFS configuration option dmapiSessionFailureTimeout. See “GPFS configuration options for

DMAPI” on page 16. The default is immediate timeout.

GPFS keeps the state of a failed session for 24 hours, during which the session should be assumed.

When this time has elapsed, and the session has not been assumed, the session is discarded. An attempt

to assume a session after it has been discarded will fail.

30 GPFS: DMAPI Guide

Event recovery

Synchronous events are recoverable after session failure.

The state of synchronous events is maintained both at the source node and at the session node. When

the old session is assumed, pending synchronous events are resubmitted by surviving source nodes.

All the events originating from the session node itself are lost during session failure, including user events

generated by the DM application. All file operations on the session node fail with the ESTALE error code.

When a session fails, all of its tokens become obsolete. After recovery, the dm_getall_tokens function

returns an empty list of tokens, and it is therefore impossible to identify events that were outstanding when

the failure occurred. All recovered events return to the initial non-received state, and must be explicitly

received again. The token id of a recovered event is the same as prior to the failure (except for the mount

event).

If the token of a recovered event is presented in any DMAPI function before the event is explicitly received

again, the call will fail with the ESRCH error code. The ESRCH error indicates that the event exists, but is

not in the outstanding state. This is to be distinguished from the EINVAL error code, which indicates that

the token id itself is not valid (there is no event).

The semantics of the ESRCH error code in GPFS are different from the XDSM standard. This is entailed

by the enhanced failure model. The DM application may not notice that the GPFS daemon has failed and

recovered, and may attempt to use a token it has received prior to the failure. For example, it may try to

respond to the event. The ESRCH error code tells the DM application that it must receive the event again,

before it can continue using the token. Any access rights associated with the token prior to the failure are

lost. See “Loss of access rights.”

When a mount event is resubmitted to a session during session recovery, it will have a different token id

than before the failure. This is an exception to the normal behavior, since all other recovered events have

the same token id as before. The DM application thus cannot distinguish between recovered and new

mount events. This should not be a problem, since the DM application must in any case be able to handle

multiple mount events for the same file system.

Unmount events will not be resubmitted after session recovery. All such events are lost. This should not be

a problem, since the event cannot affect the unmount operation, which has already been completed by the

time the event was generated. In other words, despite being synchronous, semantically the unmount event

resembles an asynchronous post event.

Loss of access rights

When the GPFS daemon fails on the session node, all file systems on the node are forced unmounted. As

a result, all DM access rights associated with any local session are lost.

After daemon recovery, when the old sessions are assumed and the events are resubmitted, there is no

way of identifying events that were already being handled prior to the failure (outstanding events), nor is

there a guarantee that objects have not been accessed or modified after the access rights were lost. The

DM application must be able to recover consistently without depending on persistent access rights. For

example, it could keep its own state of events in progress, or process events idempotently.

Similarly, when a specific file system is forced unmounted at the session node, all DM access rights

associated with the file system are lost, although the events themselves prevail on the session queue.

After the file system is remounted, DMAPI calls using existing tokens may fail due to insufficient access

rights. Also, there is no guarantee that objects have not been accessed or modified after the access rights

were lost.

Chapter 5. Failure and recovery of Data Management API for GPFS 31

DM application failure

If only the DM application fails, the session itself remains active, events remain pending, and client threads

remain blocked waiting for a response. New events will continue to arrive at the session queue.

Note: GPFS is unable to detect that the DM application has failed.

The failed DM application must be recovered on the same node, and continue handling the events. Since

no DMAPI resources are lost in this case, there is little purpose in moving the DM application to another

node. Assuming an existing session on another node is not permitted in GPFS, except after session node

failure.

If the DM application fails simultaneously with the session node, the gpfsready shell script can be used to

restart the DM application on the failed node. See “Initializing the Data Management application” on page

17. In the case of simultaneous failures, the DM application can also be moved to another node and

assume the failed session there. See “Single-node failure” on page 29.

32 GPFS: DMAPI Guide

Accessibility features for GPFS

Accessibility features help users who have a disability, such as restricted mobility or limited vision, to use

information technology products successfully.

Accessibility features

The following list includes the major accessibility features in GPFS:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

v Keys that are discernible by touch but do not activate just by touching them

v Industry-standard devices for ports and connectors

v The attachment of alternative input and output devices

The IBM Cluster Information Center, and its related publications, are accessibility-enabled. The

accessibility features of the information center are described at http://publib.boulder.ibm.com/infocenter/
clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.addinfo.doc/access.html.

Keyboard navigation

This product uses standard Microsoft® Windows navigation keys.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about the commitment that IBM

has to accessibility:

http://www.ibm.com/able

© Copyright IBM Corp. 1998, 2008 33

34 GPFS: DMAPI Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only

IBM’s product, program, or service may be used. Any functionally equivalent product, program, or service

that does not infringe any of IBM’s intellectual property rights may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions

are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Intellectual Property Law

Mail Station P300

© Copyright IBM Corp. 1998, 2008 35

2455 South Road,

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment or a fee.

The licensed program described in this document and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any

equivalent agreement between us.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs in

any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming to

the application programming interfaces for the operating platform for which the sample programs are

written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business

Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked

terms are marked on their first occurrence in this information with a trademark symbol (® or

™), these

symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law trademarks in other countries. A

current list of IBM trademarks is available on the Web at ″Copyright and trademark information″ at

www.ibm.com/legal/copytrade.shtml

Intel®, Intel Inside® (logos), MMX and Pentium® are trademarks of Intel Corporation in the United States,

other countries, or both.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Red Hat, the Red Hat “Shadow Man” logo, and all Red Hat-based trademarks and logos are trademarks or

registered trademarks of Red Hat, Inc., in the United States and other countries.

36 GPFS: DMAPI Guide

|
|
|
|
|
|
|

UNIX is a registered trademark of the Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Notices 37

38 GPFS: DMAPI Guide

Glossary

This glossary defines technical terms and

abbreviations used in GPFS documentation. If you

do not find the term you are looking for, refer to

the index of the appropriate book or view the IBM

Glossary of Computing Terms, located on the

Internet at: http://www-306.ibm.com/software/
globalization/terminology/index.jsp.

B

block utilization. The measurement of the percentage

of used subblocks per allocated blocks.

C

cluster. A loosely-coupled collection of independent

systems (nodes) organized into a network for the

purpose of sharing resources and communicating with

each other. See also GPFS cluster.

cluster configuration data. The configuration data

that is stored on the cluster configuration servers.

cluster manager. The node that monitors node status

using disk leases, detects failures, drives recovery, and

selects file system managers. The cluster manager is

the node with the lowest node number among the

quorum nodes that are operating at a particular time.

control data structures. Data structures needed to

manage file data and metadata cached in memory.

Control data structures include hash tables and link

pointers for finding cached data; lock states and tokens

to implement distributed locking; and various flags and

sequence numbers to keep track of updates to the

cached data.

D

Data Management Application Program Interface

(DMAPI). The interface defined by the Open Group’s

XDSM standard as described in the publication System

Management: Data Storage Management (XDSM) API

Common Application Environment (CAE) Specification

C429, The Open Group ISBN 1-85912-190-X.

deadman switch timer. A kernel timer that works on a

node that has lost its disk lease and has outstanding I/O

requests. This timer ensures that the node cannot

complete the outstanding I/O requests (which would risk

causing file system corruption), by causing a panic in

the kernel.

disk descriptor. A definition of the type of data that

the disk contains and the failure group to which this disk

belongs. See also failure group.

disposition. The session to which a data management

event is delivered. An individual disposition is set for

each type of event from each file system.

disk leasing. A method for controlling access to

storage devices from multiple host systems. Any host

that wants to access a storage device configured to use

disk leasing registers for a lease; in the event of a

perceived failure, a host system can deny access,

preventing I/O operations with the storage device until

the preempted system has reregistered.

domain. A logical grouping of resources in a network

for the purpose of common management and

administration.

F

failback. Cluster recovery from failover following

repair. See also failover.

failover. (1) The process of transferring all control of

the ESS to a single cluster in the ESS when the other

cluster in the ESS fails. See also cluster. (2) The routing

of all transactions to a second controller when the first

controller fails. See also cluster. (3) The assumption of

file system duties by another node when a node fails.

failure group. A collection of disks that share common

access paths or adapter connection, and could all

become unavailable through a single hardware failure.

fileset. A hierarchical grouping of files managed as a

unit for balancing workload across a cluster.

file-management policy. A set of rules defined in a

policy file that GPFS uses to manage file migration and

file deletion. See also policy.

file-placement policy. A set of rules defined in a

policy file that GPFS uses to manage the initial

placement of a newly created file. See also policy.

file system descriptor. A data structure containing

key information about a file system. This information

includes the disks assigned to the file system (stripe

group), the current state of the file system, and pointers

to key files such as quota files and log files.

file system descriptor quorum. The number of disks

needed in order to write the file system descriptor

correctly.

file system manager. The provider of services for all

the nodes using a single file system. A file system

manager processes changes to the state or description

of the file system, controls the regions of disks that are

allocated to each node, and controls token management

and quota management.

© Copyright IBM Corp. 1998, 2008 39

http://www.ibm.com/software/globalization/terminology/index.html
http://www.ibm.com/software/globalization/terminology/index.html
http://www.opengroup.org/
http://www.opengroup.org/
http://www.opengroup.org/
http://www.opengroup.org/

fragment. The space allocated for an amount of data

too small to require a full block. A fragment consists of

one or more subblocks.

G

GPFS cluster. A cluster of nodes defined as being

available for use by GPFS file systems.

GPFS portability layer. The interface module that

each installation must build for its specific hardware

platform and Linux distribution.

GPFS recovery log. A file that contains a record of

metadata activity, and exists for each node of a cluster.

In the event of a node failure, the recovery log for the

failed node is replayed, restoring the file system to a

consistent state and allowing other nodes to continue

working.

I

ill-placed file. A file assigned to one storage pool, but

having some or all of its data in a different storage pool.

ill-replicated file. A file with contents that are not

correctly replicated according to the desired setting for

that file. This situation occurs in the interval between a

change in the file's replication settings or suspending

one of its disks, and the restripe of the file.

indirect block. A block containing pointers to other

blocks.

IBM Virtual Shared Disk. The subsystem that allows

application programs running on different nodes to

access a logical volume as if it were local to each node.

The logical volume is local to only one of the nodes (the

server node).

inode. The internal structure that describes the

individual files in the file system. There is one inode for

each file.

J

journaled file system (JFS). A technology designed

for high-throughput server environments, which are

important for running intranet and other

high-performance e-business file servers.

junction.

 A special directory entry that connects a name in a

directory of one fileset to the root directory of another

fileset.

K

kernel. The part of an operating system that contains

programs for such tasks as input/output, management

and control of hardware, and the scheduling of user

tasks.

L

logical volume. A collection of physical partitions

organized into logical partitions, all contained in a single

volume group. Logical volumes are expandable and can

span several physical volumes in a volume group.

Logical Volume Manager (LVM). A set of system

commands, library routines, and other tools that allow

the user to establish and control logical volume (LVOL)

storage. The LVM maps data between the logical view

of storage space and the physical disk drive module

(DDM).

M

metadata. A data structures that contain access

information about file data. These include: inodes,

indirect blocks, and directories. These data structures

are not accessible to user applications.

metanode. The one node per open file that is

responsible for maintaining file metadata integrity. In

most cases, the node that has had the file open for the

longest period of continuous time is the metanode.

mirroring. The process of writing the same data to

multiple disks at the same time. The mirroring of data

protects it against data loss within the database or

within the recovery log.

multi-tailed. A disk connected to multiple nodes.

N

namespace. Space reserved by a file system to

contain the names of its objects.

Network File System (NFS). A protocol, developed by

Sun Microsystems, Incorporated, that allows any host in

a network to gain access to another host or netgroup

and their file directories.

Network Shared Disk (NSD). A component for

cluster-wide disk naming and access.

NSD volume ID. A unique 16 digit hex number that is

used to identify and access all NSDs.

node. An individual operating-system image within a

cluster. Depending on the way in which the computer

system is partitioned, it may contain one or more nodes.

40 GPFS: DMAPI Guide

node descriptor. A definition that indicates how GPFS

uses a node. Possible functions include: manager node,

client node, quorum node, and nonquorum node

node number. A number that is generated and

maintained by GPFS as the cluster is created, and as

nodes are added to or deleted from the cluster.

node quorum. The minimum number of nodes that

must be running in order for the daemon to start.

node quorum with tiebreaker disks. A form of

quorum that allows GPFS to run with as little as one

quorum node available, as long as there is access to a

majority of the quorum disks.

non-quorum node. A node in a cluster that is not

counted for the purposes of quorum determination.

P

policy. A list of file-placement and service-class rules

that define characteristics and placement of files.

Several policies can be defined within the configuration,

but only one policy set is active at one time.

policy rule. A programming statement within a policy

that defines a specific action to be preformed.

pool. A group of resources with similar characteristics

and attributes.

portability. The ability of a programming language to

compile successfully on different operating systems

without requiring changes to the source code.

primary GPFS cluster configuration server. In a

GPFS cluster, the node chosen to maintain the GPFS

cluster configuration data.

private IP address. A IP address used to

communicate on a private network.

public IP address. A IP address used to communicate

on a public network.

Q

quorum node. A node in the cluster that is counted to

determine whether a quorum exists.

quota. The amount of disk space and number of

inodes assigned as upper limits for a specified user,

group of users, or fileset.

quota management. The allocation of disk blocks to

the other nodes writing to the file system, and

comparison of the allocated space to quota limits at

regular intervals.

R

Redundant Array of Independent Disks (RAID). A

collection of two or more disk physical drives that

present to the host an image of one or more logical disk

drives. In the event of a single physical device failure,

the data can be read or regenerated from the other disk

drives in the array due to data redundancy.

recovery. The process of restoring access to file

system data when a failure has occurred. Recovery can

involve reconstructing data or providing alternative

routing through a different server.

replication. The process of maintaining a defined set

of data in more than one location. Replication involves

copying designated changes for one location (a source)

to another (a target), and synchronizing the data in both

locations.

rule. A list of conditions and actions that are triggered

when certain conditions are met. Conditions include

attributes about an object (file name, type or extension,

dates, owner, and groups), the requesting client, and

the container name associated with the object.

S

SAN-attached. Disks that are physically attached to all

nodes in the cluster using Serial Storage Architecture

(SSA) connections or using fibre channel switches

secondary GPFS cluster configuration server. In a

GPFS cluster, the node chosen to maintain the GPFS

cluster configuration data in the event that the primary

GPFS cluster configuration server fails or becomes

unavailable.

Secure Hash Algorithm digest (SHA digest). A

character string used to identify a GPFS security key.

Serial Storage Architecture (SSA). An American

National Standards Institute (ANSI) standard,

implemented by IBM, for a high-speed serial interface

that provides point-to-point connection for peripherals,

such as storage arrays.

session failure. The loss of all resources of a data

management session due to the failure of the daemon

on the session node.

session node. The node on which a data

management session was created.

Small Computer System Interface (SCSI). An

ANSI-standard electronic interface that allows personal

computers to communicate with peripheral hardware,

such as disk drives, tape drives, CD-ROM drives,

printers, and scanners faster and more flexibly than

previous interfaces.

Glossary 41

snapshot. A copy of changed data in the active files

and directories of a file system with the exception of the

inode number, which is changed to allow application

programs to distinguish between the snapshot and the

active files and directories.

source node. The node on which a data management

event is generated.

SSA. See Serial Storage Architecture.

stand-alone client. The node in a one-node cluster.

storage area network (SAN). A dedicated storage

network tailored to a specific environment, combining

servers, storage products, networking products,

software, and services.

storage pool. A grouping of storage space consisting

of volumes, logical unit numbers (LUNs), or addresses

that share a common set of administrative

characteristics.

stripe group. The set of disks comprising the storage

assigned to a file system.

striping. A storage process in which information is

split into blocks (a fixed amount of data) and the blocks

are written to (or read from) a series of disks in parallel.

subblock. The smallest unit of data accessible in an

I/O operation, equal to one thirty-second of a data

block.

system storage pool. A storage pool containing file

system control structures, reserved files, directories,

symbolic links, special devices, as well as the metadata

associated with regular files, including indirect blocks

and extended attributes The system storage pool can

also contain user data.

T

token management. A system for controlling file

access in which each application performing a read or

write operation is granted some form of access to a

specific block of file data. Token management provides

data consistency and controls conflicts. Token

management has two components: the token

management server, and the token management

function.

token management function. A component of token

management that requests tokens from the token

management server. The token management function is

located on each cluster node.

token management server. A component of token

management that controls tokens relating to the

operation of the file system. The token management

server is located at the file system manager node.

twin-tailed. A disk connected to two nodes.

U

user storage pool. A storage pool containing the

blocks of data that make up user files.

V

virtual file system (VFS). A remote file system that

has been mounted so that it is accessible to the local

user.

virtual shared disk. See IBM Virtual Shared Disk.

virtual node (vnode). The structure that contains

information about a file system object in an virtual file

system (VFS).

42 GPFS: DMAPI Guide

Index

A
access rights

locking 12

loss of 31

restrictions 12

accessibility features for the GPFS product 33

application failure 32

argument
buflen 27

flags 27

hanp 25

hlen 25

len 27

nelem 25, 28

nelemp 25

off 27

sessinfop 25

attribute bit
dm_at_size 22

attributes
configuration 6

description 13

extended 13

GPFS specific 19

non-opaque 13

nonopaque 7

opaque 7, 13

C
commands

mmchconfig 16

configuration see also cluster 45

configuration option
dmapiEnable 17

dmapiEventTimeout 14

NFS (Network File System) 16

dmapiMountTimeout 11, 17

dmapiSessionFailureTimeout 16, 30

configuration options
DMAPI 16

D
Data Management API

failure 32

restarting 32

data structures
defined 19

specific to GPFS implementation 19

data type
dm_eventset_t 19

definitions
GPFS specific DMAPI functions 22, 23

description
dmapiFileHandleSize 16

dmapiMountEvent 16

directory
/user/lpp/mmfs/bin 15

/user/lpp/mmfs/samples 17

/usr/lpp/mmfs/include 15

/usr/lpp/mmfs/lib 15

/var/mmfs/etc 17

DM application threads 13

DM application, role in session failure 9

DM_EVENT_POSTPERMCHANGE 26

DM_EVENT_PREPERMCHANGE 26

dm_handle_to_snap 6

definitions 22

dm_make_xhandle 6

definitions 23

DM_NO_TOKEN 12

DMAPI
administration 15

applications 15

compiling on AIX nodes 16

configuration attributes 6

configuration options 16

failure 29

features 1

files on Linux nodes 16

functions 2

initializing 17

overview 1

recovery 29

restrictions 7

DMAPI events
GPFS specific 1

GPFS specific attribute events that are not part of

the DMAPI standard 2

implemented in DMAPI for GPFS 1

optional events not implemented in DMAPI for

GPFS 2

DMAPI events, GPFS specific 26

DMAPI functions, GPFS specific 6

definitions 22

dm_handle_to_snap 22

dm_make_xhandle 23

DMAPI token, description 12

dmapiFileHandleSize
description 16

dmapiMountEvent attribute
description 16

E
enabling DMAPI

migrating a file system 17

mmchfs command 17

mmcrfs command 17

environment
multiple node 9

single-node 9

error code
EAGAIN 21

© Copyright IBM Corp. 1998, 2008 43

error code (continued)
EBADF 21, 27

EBUSY 11, 14

EINVAL 21, 22, 27, 31

EIO 11, 17, 26

ENOMEM 26

ENOSYS 21, 26

ENOTREADY 14, 21, 26, 30

EPERM 20, 21, 26, 27

ESRCH 22, 27, 30, 31

ESTALE 26

error code, definitions 26

event
asynchronous 10

description 10

disposition 10

enabled 10

mount 11

pre-unmount 11

preunmount 19

synchronous 10

unmount 11, 19

events
as defined in XDSM standard 1

asynchronous 2

GPFS specific attribute events that are not part of

the DMAPI standard 2

implemented
data events 2

metadata events 2

namespace events 1

pseudo events 2

implemented in DMAPI for GPFS 1

not implemented
file system administration 2

metadata 2

optional events not implemented in DMAPI for

GPFS 2

source node 29

events, GPFS specific DMAPI events 1, 26

events, metadata
DM_EVENT_POSTPERMCHANGE 26

DM_EVENT_PREPERMCHANGE 26

F
failure

dm application 29

GPFS daemon 2, 9

partial system 29

session 9, 10

session node 29

single-node 29

source node 29, 30

total system 29

field
dt_change 19

dt_ctime 19

dt_dtime 19

dt_nevents 25

ev_nodeid 19

field (continued)
me_handle2 12

me_mode 12, 19, 25

me_name1 12

me_roothandle 12

ne_mode 19

rg_opaque 19

uio_resid 27

file
/etc/filesystems 12

dmapi_types.h 15

dmapi.exp export 15

dmapi.h 15

dmapicalls 15, 21

file handle
error code 27

file system handle 12

usage of 24

file, memory mapped 14

filesets, required 15

flag
DM_LOCAL_MOUNT 11, 19

DM_MOUNT_LOCAL 25

DM_MOUNT_REMOTE 25

DM_REMOTE_MOUNT 12, 19

DM_RR_WAIT 21

DM_UNMOUNT_FORCE 11

function
dm_create_session 25

dm_downgrade_right 21, 27

dm_find_eventmsg 27

dm_get_alloc_info 28

dm_get_bulkall 21, 24, 25, 27

dm_get_bulkattr 21, 24, 27

dm_get_config 6

dm_get_config_events 6, 25

dm_get_dirattrs 27

dm_get_eventlist 21, 24, 25

dm_get_events 27

dm_get_fileattr 19, 25

dm_get_mount_info 21

dm_get_mountinfo 12, 19, 21, 24, 25, 27

dm_get_region 27

dm_getall_disp 24, 27

dm_getall_dmattr 27

dm_getall_sessions 28

dm_getall_tokens 28, 31

dm_handle_hash 25

dm_handle_is_valid 25

dm_handle_to_fshandle 25

dm_handle_to_fsid 25

dm_handle_to_igen 25

dm_handle_to_ino 25

dm_handle_to_path 27

dm_handle_to_snap 25

dm_init_attrloc 25

dm_init_service 27

dm_make_fshandle 24

dm_make_handle 24

dm_make_xhandle 24

dm_mount_event 12

44 GPFS: DMAPI Guide

function (continued)
dm_move_event 22, 27

dm_probe_hole 25, 27

dm_punch_hole 14, 22, 25, 27

dm_query_right 21

dm_query_session 24, 25

dm_read_invis 25, 27

dm_release_right 21

dm_request_right 21

dm_respond_event 27

dm_send_msg 24

dm_set_disp 21, 24, 25

dm_set_eventlist 21, 24, 25

dm_set_file_attr 22

dm_set_return_on_destroy 21, 24

dm_sync_by_handle 27

dm_upgrade_right 21, 27

dm_write_invis 14, 25, 27

functions
implemented 3, 5

mandatory 3

not implemented 5

optional 5

restrictions 20

functions, GPFS specific DMAPI functions 6

definitions 22

dm_handle_to_snap 22

dm_make_xhandle 23

G
GPFS

enhancements 19

file system 1

implementation 1, 19

GPFS daemon failure 9

GPFS enhancements
implementation of 19

GPFS specific DMAPI events 1, 26

GPFS specific DMAPI functions 6

definitions 22

dm_handle_to_snap 22

dm_make_xhandle 23

I
installation requirements 15

L
license inquiries 35

LookAt message retrieval tool x

M
macro

DM_TOKEN_EQ (x,y) 20

DM_TOKEN_GE (x,y) 20

DM_TOKEN_GT (x,y) 20

DM_TOKEN_LE (x,y) 20

macro (continued)
DM_TOKEN_LT (x,y) 20

DM_TOKEN_NE (x,y) 20

DMEV_ADD(eset1, eset2) 20

DMEV_ALL(eset) 20

DMEV_ISALL(eset) 20

DMEV_ISDISJ(eset1, eset2) 20

DMEV_ISEQ(eset1, eset2) 20

DMEV_ISSUB(eset2) 20

DMEV_ISZERO(eset) 20

DMEV_NORM(eset) 20

DMEV_REM(eset1, eset2) 20

DMEV_RES(eset1, eset2) 20

macros, GPFS 19

macros, XDSM standard 19

message retrieval tool, LookAt x

metadata events
DM_EVENT_POSTPERMCHANGE 26

DM_EVENT_PREPERMCHANGE 26

multi-node environment 29

multi-node system
model for DMAPI 29

multiple sessions 13

N
NFS (Network File System) 14

node id 19

notices 35

P
parallel environment, DM applications 13

patent information 35

performance 10

Q
quota 14

R
recovery

mount event 31

synchronous event 31

unmount event 31

restrictions
functions 20

restripe see rebalance 45

root credentials 20

S
semantic changes

for the GPFS implementation 24

session
failure 10, 25, 30

recovery 30

session node 9, 24, 29

session, assuming a 9, 25

Index 45

sessions
description 9

failure 9

information string, changing 25

maximum per node 9, 20

state of 9

shell script
gpfsready 17

single-node 29

single-node environment 29

snapshots
coexistence 7

source node 9, 29

Stripe Group Manager see File System Manager 45

structure
dm_eventmsg 19

dm_mount_event 12, 19, 25

dm_namesp_event 19

dm_region_t 19

dm_stat 19

dm_stat_t 25

dm_vardata_t 19

uio 27

T
token, usage 12

tokens
input arguments 27

trademarks 36

U
usage restrictions 20

X
XDSM standard 6, 9, 29, 30

46 GPFS: DMAPI Guide

Reader’s comments - We’d like to hear from you

General Parallel File System

Data Management API Guide

Version 3 Release 2.1

 Publication No. GA76-0414-02

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 GA76-0414-02

GA76-0414-02

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 58HA, Mail Station P181

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5724-N94
5765-G66

GA76-0414-02

	Contents
	Figures
	Tables
	About this information
	Who should read this information
	Conventions used in this information
	Prerequisite and related information
	ISO 9000
	Using LookAt to look up message explanations
	How to send your comments

	Summary of changes
	Chapter 1. Overview of the Data Management API for GPFS
	GPFS specific DMAPI events
	DMAPI functions
	Mandatory functions implemented in DMAPI for GPFS
	Optional functions implemented in DMAPI for GPFS
	Optional functions that are not implemented in DMAPI for GPFS
	GPFS-specific DMAPI functions

	DMAPI configuration attributes
	DMAPI restrictions for GPFS

	Chapter 2. Data Management API principles for GPFS
	Sessions
	Events
	Mount and unmount
	Tokens and access rights
	Parallelism in Data Management applications
	Data Management attributes
	Support for NFS
	Quota
	Memory mapped files

	Chapter 3. Administering the Data Management API for GPFS
	Required files for implementation of Data Management applications
	GPFS configuration options for DMAPI
	Enabling DMAPI for a file system
	Initializing the Data Management application

	Chapter 4. Specifications of enhancements in the GPFS implementation of Data Management API
	Enhancements to data structures
	Usage restrictions on DMAPI functions
	Definitions for GPFS specific DMAPI functions
	dm_handle_to_snap
	dm_make_xhandle

	Semantic changes to DMAPI functions
	GPFS-specific DMAPI events
	Additional error codes returned by DMAPI functions

	Chapter 5. Failure and recovery of Data Management API for GPFS
	Single-node failure
	Session failure and recovery
	Event recovery
	Loss of access rights
	DM application failure

	Accessibility features for GPFS
	Accessibility features
	Keyboard navigation
	IBM and accessibility

	Notices
	Trademarks

	Glossary
	Index
	Reader's comments - We'd like to hear from you

