[

N

w

IS

5

o

~

©

©

10

S)

1

=y

1.

N

1

@

1

I

1!

13

1

=

1

]

1

©

1

©

2

S

2.

=

2.

N

2

@

24

2

o

2

=

2

X

2

@

2

©

3

i<}

3

=

32

33

Prelink

Jakub Jéhek
Red Hat, Inc.
jakub@redhat.com

March 4, 2004

Abstract

Prelink is a tool designed to speed up dynamic linking of ELF programs on various Linux architectures.
It speeds up start up of OpenOffice.org 1.1 by 1.8s from 5.5s on 651MHz Pentium 111

1 Preface

In 1995, Linux changed its binary format froaamout to ELF. Thea.out binary format was very inflexible and shared
libraries were pretty hard to build. Linux’s shared librarieaiout are position dependent and each had to be given a
unique virtual address space slot at link time. Maintaining these assignments was pretty hard even when there were just
a few shared libraries, there used to be a central address registry maintained by humans in form of a text file, but it is
certainly impossible to do these days when there are thousands of different shared libraries and their size, version and
exported symbols are constantly changing. On the other side, there was just minimum amount of work the dynamic
linker had to do in order to load these shared libraries, as relocation handling and symbol lookup was only done at link
time. The dynamic linker used theelib system call which just mapped the named library into the address space
(with no segment or section protection differences, the whole mapping was writable and executable).

The ELFE] binary format is one of the most flexible binary formats, its shared libraries are easy to build and there is no
need for a central assignment of virtual address space slots. Shared libraries are position independent and relocation
handling and symbol lookup are done partly at the time the executable is created and partly at runtime. Symbols in
shared libraries can be overridden at runtime by preloading a new shared library defining those symbols or without
relinking an executable by adding symbols to a shared library which is searched up earlier during symbol lookup or
by adding new dependent shared libraries to a library used by the program. All these improvements have their price,
which is a slower program startup, more non-shareable memory per process and runtime cost associated with position
independent code in shared libraries.

Program startup dfLF programs is slower than startupabut programs with shared libraries, because the dynamic

linker has much more work to do before calling program’s entry point. The cost of loading libraries is just slightly
bigger, asELF shared libraries have typically separate read-only and writable segments, so the dynamic linker has to
use different memory protection for each segment. The main difference is in relocation handling and associated symbol
lookup. In thea.out format there was no relocation handling or symbol lookup at runtim&L, this cost is much

more important today than it used to be duringut to ELF transition in Linux, as especially GUI programs keep
constantly growing and start to use more and more shared libraries. 5 years ago programs using more than 10 shared
libraries were very rare, these days most of the GUI programs link against around 40 or more shared and in extreme
cases programs use even more than 90 shared libraries. Every shared library adds its set of dynamic relocations to
the cost and enlarges symbol search scope, so in addition to doing more symbol lookups, each symbol lookup the
application has to perform is on average more expensive. Another factor increasing the cost is the length of symbol
names which have to be compared when finding symbol in the symbol hash table of a shared library. C++ libraries
tend to have extremely long symbol names and unfortunately thé new C++ ABI puts namespaces and class hames first
and method names last in the mangled names, so often symbol names differ only in last few bytes of very long names.

Every time a relocation is applied the entire memory page containing the address which is written to must be loaded
into memory. The operating system does a copy-on-write operation which also has the consequence that the physical

1As described in generic ABI document [1] and various processor specific ABI supplements [2], [3], [4], [5], [6], [7], [8].

mailto:jakub@redhat.com
http://www.caldera.com/developers/devspecs/gabi41.pdf
http://www.codesourcery.com/cxx-abi/

34

35

36

37

3

&

3

©

4

S

4

s

4

N

4

@

4

i

4

[l

4

>

4

[

4

3

4

©

5

<}

5.

=

5!

N

5.

@

54

5!

a

5

&>

5

a

5

o

5!

©

6

=}

6.

2

6!

N

6!

@

6.

=

6!

@

6

&>

6

2

6

-3

6!

©

7

=)

7

oy

7

N

7

@

7.

N

7

a

7

=

7

N

memory of the memory page cannot anymore be shared with other processe€L®ithipically all of program’s
Global Offset Table, constants and variables containing pointers to objects in shared libraries, etc. are written into
before the dynamic linker passes control over to the program.

On most architectures (with some exceptions WeD64architecture) position independent code requires that one
register needs to be dedicatedRIS register and thus cannot be used in the functions for other purposes. This
especially degrades performance on register-starved architectures-ke. Also, there needs to be some code to
set up thePIC register, either invoked as part of function prologues, or when using function descriptors in the calling
sequence.

Prelink is a tool which (together with corresponding dynamic linker and linker changes) attempts to bring back some
of thea.out advantages (such as the speed and less COW'd pages) EaRH@nary format while retaining all of

its flexibility. In a limited way it also attempts to decrease number of non-shareable pages created by relocations.
Prelink works closely with the dynamic linker in the GNU C library, but probably it wouldn’t be too hard to port it

to some otheELF using platforms where the dynamic linker can be modified in similar ways.

2 Caching of symbol lookup results

Program startup can be speeded up by caching of symbol lookup E]asmaey shared libraries need more than one
lookup of a particular symbol. This is especially true for C++ shared libraries, where e.g. the same method is present in
multiple virtual tables oRTTI data structures. Traditionally, eaEbF section which needs dynamic relocations has an
associatedela* or.rel* section (depending on whether the architecture is defined tREis&or REL relocations).

The relocations in those sections are typically sorted by ascendiffget values. Symbol lookups are usually the

most expensive operation during program startup, so caching the symbol lookups has potential to decrease time spent
in the dynamic linker. One way to decrease the cost of symbol lookups is to create a table with the size equal to number
of entries in dynamic symbol tableignsym) in the dynamic linker when resolving a particular shared library, but that
would in some cases need a lot of memory and some time spent in initializing the table. Another option would be to
use a hash table with chained lists, but that needs both extra memory and would also take extra time for computation of
the hash value and walking up the chains when doing new lookups. Fortunately, neither of this is really necessary if we
modify the linker to sort relocations so that relocations against the same symbol are adjacent. This has been done first
in the Sun linker and dynamic linker, so the GNU linker and dynamic linker use the frReextensions and linker

flags. Particularly, the following ne®LF dynamic tags have been introduced:

#define DT _RELACOUNT O0x6ffffffo
#define DT _RELCOUNT O0x6ffffffa

New options-z combreloc and-z nocombreloc have been added to the linker. The latter causes the previous
linker behavior, i.e. each section requiring relocations has a corresponding relocation section, which is sorted by
ascending _offset .-z combreloc E|instructs the linker to create just one relocation section for dynamic relocations
other than symbol jump table(T) relocations. This single relocation section (eittrefa.dyn or .rel.dyn)is

sorted, so that relative relocations come first (sorted by ascendiffget), followed by other relocations, sorted

again by ascending_offset . If more relocations are against the same symbol, they immediately follow the first
relocation against that symbol with lowesbffset . E} The number of relative relocations at the beginning of the
section is stored in theT.RELACOUNTesp.DT_-RELCOUNTynamic tag.

The dynamic linker can use the new dynamic tag for two purposes. If the shared library is successfully mapped at the
same address as the firPSt LOADsegment’s virtual address, the load offset is zero and the dynamic linker can avoid alll
the relative relocations which would just add zero to various memory locations. Normally shared libraries are linked
with first PT.LOADsegment’s virtual address set to zero, so the load offset is non-zero. This can be changed through
a linker script or by using a speciplelink option --reloc-only to change the base address of a shared library.

All prelinked shared libraries have non-zero base address as well. If the load offset is non-zero, the dynamic linker
can still make use of this dynamic tag, as relative relocation handling is typically way simpler than handling other

2Initially, this has been implemented in tigelink tool andglibc dynamic linker, whergrelink was sorting relocation sections of
existing executables and shared libraries. When this has been implemented in the linker as well and most executables and shared libraries are already
built with -z combreloc , the code fronprelink has been removed, as it was no longer needed for most objects and just increasing the
tool’s complexity.

8-z combreloc s the default in GNU linker versions 2.13 and later.

4In fact the sorting needs to take into account also the type of lookup. Most of the relocations will resoRE Tt in the executable if there
is one for the lookup symbol, because the executable might have a pointer against that symbol without any dynamic relocations. But e.g. relocations
used for thePLT slots must avoid these.

2 Draft 0.7 Prelink

7

®

7

©

8

S

8.

=

8

N

8

@

8.

g

85

86

87

88

89

90

91

9.

N

9

@

9.

=

95

96

97

98

99

100

10:

=2

102

10:

@

104

10!

a

10

=3

10

N1

10t

-3

10¢

@

110

S)

11

B

11.

N

11

@

114

11!

13

11

=

11

]

11

©

11

©

12(

S

12:

=

12

N

12:

@

relocations (since symbol lookup is not necessary) and thus it can handle all relative relocations in a tight loop in one

place and then handle the remaining relocations with the fully featured relocation handling routine. The second and

more important point is that if relocations against the same symbol are adjacent, the dynamic linker can use a cache
with single entry.

The dynamic linker irglibc , if it seesstatistics as part of the. D_DEBUGenvironment variable, displays statistics
which can show how useful this optimization is. Let’s look at some big C++ application, e.g. konqueror. If not using
the cache, the statistics looks like this:

18000: runtime linker statistics:

18000: total startup time in dynamic loader: 270886059 clock cycles

18000: time needed for relocation: 266364927 clock cycles (98.3%)
18000: number of relocations: 79067

18000: number of relocations from cache: 0

18000: number of relative relocations: 31169

18000: time needed to load objects: 4203631 clock cycles (1.5%)

This program run is with hot caches, on non-prelinked system, with lazy binding. The numbers show that the dynamic
linker spent most of its time in relocation handling and especially symbol lookups. If using symbol lookup cache, the
numbers look different:

18013: total startup time in dynamic loader: 132922001 clock cycles

18013: time needed for relocation: 128399659 clock cycles (96.5%)
18013: number of relocations: 25473

18013: number of relocations from cache: 53594

18013: number of relative relocations: 31169

18013: time needed to load objects: 4202394 clock cycles (3.1%)

On average, for one real symbol lookup there were two cache hits and total time spent in the dynamic linker decreased
by 50%.

3 Prelink design

Prelink was designed, so that it requires as felF extensions as possible. It should not be tied to a particular
architecture, but should work on alLF architectures. During program startup it should avoid all symbol lookups
which, as has been shown above, are very expensive. It needs to work in an environment where shared libraries and
executables are changing from time to time, whether it is because of security updates or feature enhancements. It
should avoid big code duplication between the dynamic linker and the tool. And prelinked shared libraries need to be
usable even in non-prelinked executables, or when one of the shared libraries is upgraded and the prelinking of the
executable has not been updated.

To minimize the number of performed relocations during startup, the shared libraries (and executables) need to be
relocated already as much as possible. For relative relocations this means the library needs to be loaded always at
the same base address, for other relocations this means all shared libraries with definitions those relocations resolve
to (often this includes all shared libraries the library or executable depends on) must always be loaded at the same
addressesELF executables (with the exception Bbsition Independent Executables) have their load address fixed
already during linking. For shared librarigsglink needs something similar thout registry of virtual address

space slots. Maintaining such registry across all installations wouldn’t scale wellglsd instead assigns these

virtual address space slots on the fly after looking at all executables it is supposed to speed up and all their dependent
shared libraries. The next step is to actually relocate shared libraries to the assigned base address.

When this is done, the actual prelinking of shared libraries can be done. First, all dependent shared libraries need to be
prelinked prelink doesn’t support circular dependencies between shared libraries, will just warn about them instead
of prelinking the libraries in the cycle), then for each relocation in the shared lipraliyk needs to look up the

symbol in natural symbol search scope of the shared library (the shared library itself first, then breadth first search of
all dependent shared libraries) and apply the relocation to the symbol’s target section. The symbol lookup code in the

Jakub Jelinek Draft 0.7 3

124

125

126

127

12:

®

129

130

131

13

R

13

@

134

13!

a

13

&

13

3

13

o

13!

©

141

S

14,

s

14.

Y

14:

@

144

14!

o

14

>

14

b

14

3

14

©

150

15,

=

15

N

15!

@

154

15!

o

15

=)

15

N

158

15

©

161

S

16:

2

16:

N

16:

@

164

165

16

>

167

168

169

170

171

172

173

174

dynamic linker is quite complex and big, so to avoid duplicating all fvisink has chosen to use dynamic linker to

do the symbol lookups. Dynamic linker is told via a special environment variable it should print all performed symbol
lookups and their type angtelink reads this output through a pipe. As one of the requirements was that prelinked
shared libraries must be usable even for non-prelinked executables (duplicating all shared libraries so that there are
pristine and prelinked copies would be very unfriendly to RAM usage)ink has to ensure that by applying the
relocation no information is lost and thus relocation processing can be cheaply done at startup time of non-prelinked
executables. FARELAarchitectures this is easier, because the content of the relocation’s target memory is not needed
when processing the relocati(ﬁ}For REL architectures this is not the cageelink attempts some tricks described

later and if they fail, needs to convert tREL relocation section tRELAformat where addend is stored in the relocation
section instead of relocation target’s memory.

When all shared libraries an executable (directly or indirectly) depends on are prelinked, relocations in the executable
are handled similarly to relocations in shared libraries. Unfortunately, not all symbols resolve the same when looked up
in a shared library’s natural symbol search scope (i.e. as it is done at the time the shared library is prelinked) and when
looked up in application’s global symbol search scope. Such symbols are hereincealtiécts and the relocations
against those symbolsonflicting relocations. Conflicts depend on the executable, all its shared libraries and their
respective order. They are only computable for the shared libraries linked to the executable (libraries mentioned in
DT_NEEDEmynamic tags and shared libraries they transitively need). The set of shared libraries loatitggbu(a)

cannot be predicted hyelink , neither can the order in which this happened, nor the time when they are unloaded.
When the dynamic linker prints symbol lookups done in the executable, it also prints comfletisk then takes all
relocations against those symbols and builds a spR&aAsection with conflict fixups and stores it into the prelinked
executable. Also a list of all dependent shared libraries in the order they appear in the symbol search scope, together
with their checksums and times of prelinking is stored in another special section.

The dynamic linker first checks if it is itself prelinked. If yes, it can avoid its preliminary relocation processing (this
one is done with just the dynamic linker itself in the search scope, so that all routines in the dynamic linker can be
used easily without too many limitations). When it is about to start a program, it first looks at the library list section
created byprelink (if any) and checks whether they are present in symbol search scope in the same order, none
have been modified since prelinking and that there aren’t any new shared libraries loaded either. If all these conditions
are satisfied, prelinking can be used. In that case the dynamic linker processes the fixup section and skips all normal
relocation handling. If one or more of the conditions are not met, the dynamic linker continues with normal relocation
processing in the executable and all shared libraries.

4 Collecting executables and libraries which should be prelinked

Before the actual work can start theelink tool needs to collect the filenames of executables and libraries it is sup-
posed to prelink. It doesn’t make any sense to prelink a shared library if no executable is linked against it because
the prelinking information will not be used anyway. Furthermore, whiefink needs to do &EL to RELAcon-

version of relocation sections in the shared library (see later) or when it needs to @HUSOBITS PLT section to
SHT.PROGBITS a prelinked shared library might grow in size and so prelinking is only desirable if it will speed up
startup of some program. The only change which might be useful even for shared libraries which are never linked
against, only loaded usingjopen , is relocating to a unique address. This is useful if there are many relative relo-
cations and there are pages in the shared library’s writable segment which are never written into with the exception
of those relative relocations. Such shared libraries are rangeiok doesn’t handle these automatically, instead

the administrator or developer can yselink --reloc-only= ADDRESS to relocate it manually. Prelinking an
executable requires all shared libraries it is linked against to be prelinked already.

Prelink has two main modes in which it collects filenames. Onénisemental prelinking, whereprelink is

invoked without thea option. In this modeprelink queues for prelinking all executables and shared libraries given

on the command line, all executables in directory trees specified on the command line, and all shared libraries those
executables and shared libraries are linked against. For the reasons mentioned earlier a shared library is queued only if
a program is linked with it or the user tells the tool to do it anyway by explicitly mentioning it on the command line.
The second mode &l prelinking, where thea option is given on the command line. This in addition to incremental
prelinking queues all executables found in directory trees specifiglink.conf (which typically includes all or

most directories where system executables are found). For each directory subtree in the config file the user can specify
whether symbolic links to places outside of the tree are to be followed or not and whether searching should continue
even across filesystem boundaries.

5Relative relocations on certaRELAarchitectures use relocation target’s memory, either alone or together wéittdend field.

4 Draft 0.7 Prelink

15 There is also an option to blacklist some executables or directory trees so that the executables or anything in the
17s directory trees will not be prelinked. This can be specified either on the command line or in the config file.

w77 Prelink — will not attempt to change executables which use a non-standard dynamicﬁ]rfﬂxesecurity reasons,

17s because it actually needs to execute the dynamic linker for symbol lookup and it needs to avoid executing some random
179 Unknown executable with the permissions with whpehlink is run (typicallyroot , with the permissions at least

10 for changing all executables and shared libraries in the system). The administrator should enpusinthednf

11 doesn’t contain world-writable directories and such directories are not given to the tool on the command line either, but
182 the tool should be distrustful of the objects nevertheless.

183 AlSo, prelink will not change shared libraries which are not specified directly on the command line or located in the
184 directory trees specified on the command line or in the config file. This is so thatreligk doesn’t try to change
15s Shared libraries on shared networked filesystems, or at least it is possible to configure the tool so that it doesn’t do it.

1ss FOr each executable and shared library it collegtslink executes the dynamic linker to list all shared libraries it

17 depends on, checks if it is already prelinked and whether any of its dependencies changed. Objects which are already
188 prelinked and have no dependencies which changed don't have to be prelinked again (with the exception when e.g.
virtual address space layout code finds out it needs to assign new virtual address space slots for the shared library or
one of its dependencies). Running the dynamic linker to get the symbol lookup information is a quite costly operation

11 especially on systems with many executables and shared libraries installgdligo offers a fasterq mode. In

102 all modes,prelink stores modification and change times of each shared library and executable together with all

103 Object dependencies and other information ielink.cache file. When prelinking ing mode, it just compares

10« Modification and change times of the executables and shared libraries (and all their dependencies). Change time is
155 needed becaugeelink preserves modification time when prelinking (as well as permissions, owner and group). If

196 the times match, it assumes the file has not changed since last prelinking. Therefore the file can be skipped if it is
107 already prelinked and none of the dependencies changed. If any time changed or one of the dependencies changed, it
invokes the dynamic linker the same way as in normal mode to find out real dependencies, whether it has been prelinked
199 Or not etc. The collecting phase in normal mode can take a few minutes, while in quick mode usually takes just a few
200 Seconds, as the only operation it does is it calls just lotsaof system calls.

18!

©

19

o

=

19

®©

5 Assigning virtual address space slots

20,

=4

Prelink has to ensure at least that for all successfully prelinked executables all shared libraries they are (transitively)
linked against have non-overlapping virtual address space slots (furthermore they cannot overlap with the virtual ad-
dress space range used by the executable itselfikitsarea, typical stack location afdiso.cache and other files

200 mmaped by the dynamic linker in early stages of dynamic linking (before all dependencies are mmaped). If there were
any overlaps, the dynamic linker (which mmaps the shared libraries at the desired location WM#REUXED mmap

flag so that it is only soft requirement) would not manage to mmap them at the assigned locations and the prelinking
information would be invalidated (the dynamic linker would have to do all normal relocation handling and symbol

208 l00kups). Executables are linked against very wide variety of shared library combinations and that has to be taken into
200 account.

20:

I

20

@

20!

a

20

&

20

N

o

The simplest approach is to sort shared libraries by descending usage count (so that most often used shared libraries
like the dynamic linkerlibc.so etc. are close to each other) and assign them consecutive slots starting at some
architecture specific base address (with a page or two in between the shared libraries to allow for a limited growth of
shared libraries without having to reposition themelink has to find out which shared libraries will nee®&L to

212 RELAconversion of relocation sections and for those which will need the conversion count with the increased size of
the library’s loadable segments. Thigiglink behavior withoutm and-R options.

21

15

21

s

21.

[N)

21

w

21!

a

The architecture specific base address is best located a few megabytes above the locatiomaeith NULL first
argument and withoWAPFIXED starts allocating memory areas (in Linux this is the valuASK UNMAPPEBASE
macro).[] The reason for not starting to assign addressegeink immediately alTASK UNMAPPEBASEIs that
Id.so.cache and other mappings by the dynamic linker will end up in the same range and could overlap with the
shared libraries. Also, if some application usispen to load a shared library which has been prelin@mose

21

=)

21

=)

21

©

21

©

22

1S}

6standard dynamic linker path is hardcoded in the executable for each architecture. It can be overridden from the command line, but only with
one dynamic linker name (normally, multiple standard dynamic linkers are used when prelinking mixed architecture systems).

"TASKUNMAPPEIBASENhas been chosen on each platform so that there is enough virtual memory for bbtfk trerea (between exe-
cutable’s end and this memory address) emaaparea (between this address and bottom of stack).

8Typically this is because some other executable is linked against that shared library directly.

Jakub Jelinek Draft 0.7 5

221

22,

N

22!

@

224

22!

o

221

=

22

X

22

@©

229

23

S

23

=

23

R

23

@

23.

i

23!

a

23

=

23

BN}

23

o

23

©

240

24

firy

24

Y

24

(5

244

24!

o

241

>

24

S

24

o

24

©

25

S

251

25

N

25

@

254

25!

a

256

25

g

25

©

25

©

261

S

26,

2

26

N

263

264

265

266

267

268

269

270

few megabytes abovEASK UNMAPPEBASE increase the probability that the stack slot will be still unused (it can
clash with e.g. non-prelinked shared libraries loadedibyen earlierﬂ or other kinds of mmap calls witRULL first
argument likemalloc allocating big chunks of memory, mmaping of locale database, etc.).

This simplest approach is unfortunately problematic on 32-bit (or 31-bit) architectures where the total virtual address
space for a process is somewhere between 2GB (S/390) and almost 4GB (Linux 1A-32 4GB/4GB kernel split, AMD64
running 32-bit processes, etc.). Typical installations these days contain thousands of shared libraries and if each of
them is given a unique address space slot, on average executables will have pretty sparse mapping of its shared libraries
and there will be less contiguous virtual memory for application’s ow@se

Prelink has a special mode, turned on with option, in which it computes what shared libraries are ever loaded
together in some executable (not consideritapen). If two shared libraries are ever loaded togethpesink

assigns them different virtual address space slots, but if they never appear together, it can give them overlapping
addresses. For example applications us{g toolkit link typically against manykKDE shared libraries, programs

written using theGtk+ toolkit link typically against manystk+ shared libraries, but there are just very few programs
which link against bottKDE and Gtk+ shared libraries, and even if they do, they link against very small subset of
those shared libraries. So &lbEshared libraries not in that subset can use overlapping addresses witkvaBhared

libraries but the few exceptions. This leads to considerably smaller virtual address space range used by all prelinked
shared libraries, but it has its own disadvantages too. It doesn’t work too well with incremental prelinking, because then
not all executables are investigated, just those which are giveretink ’'s command linePrelink also considers
executables iprelink.cache , but it has no information about executables which have not been prelinked yet. If

a new executable, which links against some shared libraries which never appeared together before, is prelinked later,
prelink has to assign them new, non-overlapping addresses. This means that any executables, which linked against
the library that has been moved and re-prelinked, need to be prelinked again. If this happened during incremental
prelinking,prelink will fix up only the executables given on the command line, leaving other executables untouched.
The untouched executables would not be able to benefit from prelinking anymore.

Although with the above two layout schemes shared library addresses can vary slightly between different hosts running
the same distribution (depending on the exact set of installed executables and libraries), especially the most often used
shared libraries will have identical base addresses on different computers. This is often not desirable for security
reasons, because it makes it slightly easier for various exploits to jump to routines they want. Standard Linux kernels
assign always the same addresses to shared libraries loaded by the application at each run, so with these kernels
prelink doesn’'t make things worse. But there are kernel patches, such as ReBxdatshield , which randomize

memory mappings on each run. If shared libraries are prelinked, they cannot be assigned different addresses on each
run (prelinking information can be only used to speed up startup if they are mapped at the base addresses which was
used during prelinking), which means prelinking might not be desirable on some edge seretn&. can assign

different addresses on different hosts though, which is almost the same as assigning random addresses on each run for
long running processes such as daemons. Furthermore, the administrator can force full prelinking and assignment of
new random addresses every few days (if he is also willing to restart the services, so that the old shared libraries and
executables don't have to be kept in memory).

To assign random addressaslink has the-R option. This causes a random starting address somewhere in the
architecture specific range in which shared libraries are assigned, and minor random reshuffling in the queue of shared
libraries which need address assignment (normally it is sorted by descending usage count, with randomization shared
libraries which are not very far away from each other in the sorted list can be swapped)R ®pdon should work
orthogonally to them option.

Some architectures have special further requirements on shared library address assignment. On 32-bit PowerPC, if
shared libraries are located close to the executable, so that everything fits into 32MBLArs®ts resolving to those

shared libraries can use the branch relative instruction instead of more expensive sequences involving memory load and
indirect branch. If shared libraries are located in the first 32MB of address spiacs|ots resolving to those shared
libraries can use the branch absolute instruction (but alreadglots in those shared libraries resolving to addresses in

the executable cannot be done cheaply). This means for optimizatiink should assign addresses from a 24MB

region below the executable first, assuming most of the executables are smaller than those remainingliakB.

assigns these from higher to lower addresses. When this region iprflihk starts from address 0x400 up

°If shared libraries have firstPT_LOAD segment’s virtual address zero, the kernel typically picks first empty slot above
TASKUNMAPPEIBASEbig enough for the mapping.

10especially databases look these days for every byte of virtual address space on 32-bit architectures.

1170 leave some pages unmapped to c&thL L pointer dereferences.

6 Draft 0.7 Prelink

271

27.

N

27

@

274

27!

o

27

o

27

N

27!

@

27

©

28|

i<}

28:

2

28

N

28

@

28

=

28!

@

28

-

28

Q

28

@

28

©

29

oS

29,

=

29

N

293

294

29!

o

296

297

298

299

300

301

302

30:

@

304

30!

a

306

30

N

30:

=3

30¢

@

31

S)

31

=

31

Y

till the bottom of the first area. Only when all these areas aregtdlink starts picking addresses high above the
executable, so that sufficient space is left in between to leave roolkforWhen-R option is specifiedprelink

needs to honor it, but in a way which doesn’t totally Kill this optimization. So it picks up a random start base within
each of the 3 regions separately, splitting them into 6 regions.

Another architecture which needs to be handled specially is IA-32 when HséwgShield . The |1A-32 architecture

doesn’t have an bit to disable execution for each page, only for each segment. All readable pages are normally exe-
cutable. This means the stack is usually executable, as is memory allocatetday . This is undesirable for security

reasons, exploits can then overflow a buffer on the stack to transfer control to code it creates on the stack. Only very
few programs actually need an executable stack. For example programs using GCC trampolines for nested functions
need it or when an application itself creates executable code on the stack and Ealls-Bhield ~ works around this

IA-32 architecture deficiency by using a separate code segment, which starts at address 0 and spans address space until
its limit, highest page which needs to be executable. This is dynamically changed when some page with higher address
than the limit needs to be executable (either becausarafpwith PROTEXECDbit set, ormprotect with PROTEXEC

of an existing mapping). This kind of protection is of course only effective if the limit is as low as possible. The
kernel tries to put all new mappings WiHROTEXECset andNULL address low. If possible intd SCII Shield area

(first 16MB of address space) , if not, at least below the executabjeelifik detectsExec-Shield , it tries to do

the same as kernel when assigning addresses, i.e. prefers to assign addSedE Shield area and continues with

other addresses below the program. It needs to leave first LMB plus 4KB of address space unallocated though, because
that range is often used by programs using6 system call.

6 Relocation of libraries

When a shared library has a base address assigned, it needs to be relocated so that the base address is equal to the first
PT_LOADsegment'_vaddr . The effect of this operation should be bitwise identical as if the library were linked with
that base address originally. That is, the following scripts should produce identical output:

$ gcc -g -shared -o libfoo.s0.1.0.0 -WI,-h,libfoo.so.1 \
inputl.o input2.0 somelib.a
$ prelink --reloc-only=0x54321000 libfoo.s0.1.0.0

Listing O: Script to relocate a shared library after linking usimglink

and:

$ gcc -shared -WI,--verbose 2>&1 > /dev/null \
| sed -e I /" /id’” \
-e '['======/d;s/0\(+ SIZEOF_HEADERS\)/0x54321000\1/" \
> libfoo.so.lds
$ gcc -WI,-T libfoo.so.lds -g -shared -o libfoo.s0.1.0.0 \
-WI,-h,libfoo.so.1 inputl.o input2.0 somelib.a

Listing 1: Script to link a shared library at non-standard base

The first script creates a normal shared library with the default base address 0 and theslinkes’s special mode

when it just relocates a library to a given address. The second script first modifies a built-in GNU linker script for
linking of shared libraries, so that the base address is the one given instead of zero and stores it into a temporary file.
Then it creates a shared library using that linker script.

The relocation operation involves mostly adding the difference between old and new base addreBsRdiellils

which contain values representing virtual addresses of the shared library (or in the program header table also represent-
ing physical addresses). File offsets need to be unmodified. Most places where the adjustments need to be done are
clear,prelink just has to watclELF spec to see which fields contain virtual addresses.

One problem is with absolute symbolBrelink has no way to find out if an absolute symbol in a shared library is
really meant as absolute and thus not changing during relocation, or if it is an address of some place in the shared

Jakub Jelinek Draft 0.7 7

a3 library outside of any section or on their edge. For instance symbols created in the GNU linker’s script outside of
as Section directives have alHNABS section, yet they can be location in the library (esgmbolfoo = .) or they can

a5 be absolute (e.gsymbolbar = 0x12345000). This distinction is lost at link time. But the dynamic linker when

a1 l0oking up symbols doesn’t make any distinction between them, all addresses during dynamic lookup have the load
a7 Offset added to itPrelink chooses to relocate any absolute symbols with value bigger than zero, thptelisky

a1 --reloc-only gets bitwise identical output with linking directly at the different base in almost all real-world cases.

as Thread Local Storage symbols (those WH#RT_TLS type) are never relocated, as their values are relative to start of

a0 Shared library’s thread local area.

a1 When relocating the dynamic section there are no bits which tell if a particular dynamic tagi uses_ptr (which

w22 heeds to be adjusted) drun.d _val (which needs to be left as is). $eelink has to hardcode a list of well known

223 architecture independent dynamic tags which need adjusting and have a hook for architecture specific dynamic tag
224 adjustment. Sun came up withiT ADDRRNGL@ DT ADDRRNGHand DT_VALRNGLCOo0 DT_VALRNGHIdynamic tag

325 number ranges, so at least as long as these ranges are used for new dynapnétinkegs can relocate correctly even

326 Without listing them all explicitly.

a2z When relocatingrela.* or .rel.* sections, which is done in architecture specific code, relative relocations and

a2 ON .got.plt using architectures alLT relocations typically need an adjustment. The adjustment needs to be done

a2 iN eitherr _addend field of theEIfNN _Rela structure, in the memory pointed Ibyoffset , or in both locations. On

3 Some architectures what needs adjusting is not even the same for all relative relocations. Relative relocations against
a1 SOme sections need to haveaddend adjusted while others need to have memory adjusted. On many architectures,

a2 first few words inGOTare special and some of them need adjustment.

sz The hardest part of the adjustment is handling the debugging sections. These are non-allocated sections which typically
334 have no corresponding relocation section associated with tRestnk has to match the various debuggers in what

ass fields it adjusts and what are skipped. As of this writimglink should handl®WARF 215] standard as corrected

as (and extended) bPWARF 3 draft [16], Stabs [17] with GCC extensions and Alpha or MIREebug.

7 DWARF Zebugging information involves many separate sections, each of them with a unique format which needs
33 t0 be relocated differently. For relocation of thiebug _info section compilation unitprelink has to parse the

33 corresponding part of thelebug _abbrev section, adjust all values of attributes that are usingDW&ORMaddr

a0 form and adjust embedded location listebug _ranges and.debug _loc section portions depend on the exact place

ann iN .debug _info section from which they are referenced, so fivatink can keep track of their base addre3¥/ARF

a2 debugging format is very extendable, gelink needs to be very conservative when it sees unknown extensions.
a3 It needs to fail prelinking instead of silently break debugging information if it sees an unknieiwng _* section,

3¢ Unknown attribute form or unknown attribute with one of thFORNMblock* forms, as they can potentially embed

us addresses which would need adjustment.

us FOr stabs prelink tried to match GDB behavior. FOtFUN it needs to differentiate between function start and
a7 function address which are both encoded with this type, the rest of types either always need relocating or never. And
g Similarly to DWARF handling, it needs to reject unknown types.

as The relocation code iprelink is a little bit more generic than what is described above, as it is used also by other parts

=0 Of prelink , when growing sections in a middle of the shared library duRgg to RELAconversion. All adjustment

a1 functions get passed both the offset it should add to virtual addresses and a start address. Adjustment is only done if
ss2 the old virtual address was bigger or equal than the start address.

7 REL to RELA conversion

353 On architectures which normally use tRE&L format for relocations instead ®ELA (IA-32, ARM and MIPS), if
4 Certain relocation types use the memorygffset points to during relocatiomrelink has to either convert them to
sss a different relocation type which doesn’t use the memory value, or the wieblyn ~ section needs to be converted
ss6 t0 RELAformat. Let's describe it on an example on 1A-32 architecture:

7 $ cat > testl.c <<EOF
3ss extern int i[4];

o int ¥ =01 + 2;

30 EOF

©

8 Draft 0.7 Prelink

http://www.eagercon.com/dwarf/dwarf-2.0.0.pdf
http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
http://sources.redhat.com/cgi-bin/cvsweb.cgi/src/gdb/doc/stabs.texinfo?cvsroot=src

1 $ cat > test2.c <<EOF

se2 int i[4];

33 EOF

s $ gcc -nostdlib -shared -fpic -s -0 test2.so test2.c

s $ gce -nostdlib -shared -fpic -0 testl.so testl.c ./test2.so
s $ readelf -l testl.so | grep LOAD | head -1

7 LOAD 0x000000 0x00000000 0x00000000 0x002b8 0x002b8 R E 0x1000

s $ readelf - test2.so | grep LOAD | head -1

s;se LOAD 0x000000 0x00000000 0x00000000 0x00244 0x00244 R E 0x1000

a0 $ readelf -r testl.so

371

a2 Relocation section '.rel.dyn’ at offset 0x2b0 contains 1 entries:
3713 Offset Info Type Sym.Value Sym. Name
a4 000012b8 00000d01 R_386_32 00000000 i

as $ objdump -s -j .data testl.so

376

a7 testl.so: file format elf32-i386

378

a9 Contents of section .data:

0 12b8 08000000

1 $ readelf -s test2.so | grep i\$

382 11: 000012a8 16 OBJECT GLOBAL DEFAULT 8 i
s $ prelink -N ./testl.so ./test2.so

s« $ readelf -I testl.so | grep LOAD | head -1

s LOAD 0x000000 0x04dba000 0x04dba000 0x002bc 0x002bc R E 0x1000

s $ readelf - test2.so | grep LOAD | head -1

sz LOAD 0x000000 0x04db6000 0x04db6000 0x00244 0x00244 R E 0x1000

38 $ readelf -r testl.so

389

s Relocation section '.rel.dyn’ at offset 0x2b0 contains 1 entries:

s Offset Info Type Sym.Value Sym. Name + Addend
392 04dbb2bc 00000d01 R_386_32 00000000 i + 8

33 $ objdump -s -j .data testl.so

394

395 testl.so: file format elf32-i386

396

37 Contents of section .data:

ss 4dbb2bc b072db04 I
a9 $ readelf -s test2.so | grep I\$
400 11: 04db72a8 16 OBJECT GLOBAL DEFAULT 8 i

Listing 2: RELto RELAconversion example

a1 This relocation is against+ 8, where the addend is stored at the memory location pointeddffset . Prelink

«02 assigned base address 0x4dba0O&¢d.so and 0x4db6000 teest2.so . Prelink

above converted thREL

«03 Section intestl.so to RELA but let’'s assume it did not. All output containi@pc above would change t8b8

4

S

« (that changed above only becausstdyn section grew up by 4 bytes during the conversioRELAformat), the

s rest would stay unchanged. When some program linked agaststso ~ was prelinked, the (only) relocation in

w06 testl.so would not be used andwvould contain the right value, 0x4db72b0 (address-8; note that IA-32 is little

a7 endian, so the values in .data section are harder to read for a human). Now, let's assume one of the shared libraries
w08 the executable is linked against is upgraded. This means prelink information cannot be used, as it is out of date. Let's

w00 @SSume it was a library other thasst2.so . Normal relocation processing fastl.so

needs to happen. Standard

a0 R.386 32 calculation isS + A, in this case 0x4db72a8 + 0x4db72b0 = 0x9b6e558jaamtains wrong value. Either
a1 test2.so could change and now thevariable would have different address, or some other shared library linked to
a2 the executable could overload symboWithout additional information the dynamic linker cannot find out the addend

a3 1S 8.

«a The original value of a symbol could perhaps be stored in some special allocated section and the dynamic linker could
s do some magic to locate it, but it would mean standard relocation handling code in the dynamic linker cannot be used
a6 for relocation processing of prelinked shared libraries where prelinking information cannot be ugadlino in

a7 this case converts the whalel.dyn section into theRELAformat, the addend is storedrinaddend field and when

Jakub Jelinek Draft 0.7

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

43

&

43

Q

438

43

©

44

S

441

442

443

444

445

44

=

447

448

44

©

45

i<}

A~
ol
N

I
o
=)

IN
o
a

466

doing relocation processing, it really doesn’t matter what value is at the memory location pointegdftst . The
disadvantage of this is that the relocation section grew by 50%. If prelinking information can be used, it shouldn’t
matter much, since the section is never loaded at runtime because it is not accessed. If prelinking cannot be used,
whether because it is out of date or because the shared library has been loaittgaiy, it will increase memory
footprint, but it is read-only memory which is typically not used after startup and can be discarded as it is backed out
by the file containing the shared library.

At least on IA-32,REL to RELA conversion is not always necessary.RIB86 32 added is originally Oprelink

can instead change its type RB886 _GLOBDAT, which is a similar dynamic relocation, but calculatedsaéestead of

S + A There is no similar conversion f& 386 _PC32 possible though, on the other side this relocation type should
never appear in position independent shared libraries, only in position dependent code. On ARM, the situation is the
same, just using different relocation namRsARM32, R ARMGLOBDATandR ARMPC24).

The.rel.plt section doesn't have to be convertedREBLAformat on either of these architectures, if the conversion is
needed, all otherel.* allocated sections, which have to be adjacent as they are pointed®mgL andDT_RELSZ

dynamic tags, have to be converted together. The conversion itself is fairly easy, some architecture specific code just has
to fetch the original addend from memory pointed by the relocation and store it srtdend field (or clear _addend

if the particular relocation type never uses the addend). The main problem is that when the conversion happens, the
rel.dyn section grows by 50% and there needs to be room for that in the read-only loadable segment of the shared
library.

In shared libraries it is always possible to grow the first read-BmlyOADsegment by adding the additional data at the
beginning of the read-only segment, as the shared library is relocarabliek can relocate the whole shared library

to a higher address than it has assigned for it. The file offsets of all sections and the section header table file offset
need to be increased, but tBeF header and program headers need to stay at the beginning of the file. The relocation
section can then be moved to the newly created space between the end of the program header table and the first section.

Moving the section from the old location to the newly created space would leave often very big gap in virtual address
space as well as in the file at the old location of the relocation section. Fortunately the linker typically puts special
ELF sections including allocated relocation section before the code section and other read-only sections under user’s
control. These special sections are intended for dynamic linking only. Their addresses are stored jusriarthie

section ancgprelink can easily adjust them there. There is no need for a shared library to store address of one of the
special sections into its code or data sections and existing linkers in fact don't create such references. When growing
the relocation sectiomyrelink checks whether all sections before the relocation section are §faial if they are,

just moves them to lower addresses, so that the newly created space is right above the relocation section. The advantage
is that instead of moving all sections by the size of the new relocation section they can be adjusted ideally just by the
difference between old and new relocation section size.

There are two factors which can increase the necessary adjustment of all higher sections. The first is required section
alignment of any allocated section above the relocation sedbi@tink needs to find the highest section alignment
among those sections and increase the adjustment from the difference between old and new relocation section up to the
next multiple of that alignment.

The second factor is only relevant to shared libraries where linker optimized the data segment placement. Traditionally
linker assigned the end address of the read-only segment plus the architecture’s m&timpage size as the start
address of the read-write segment. While this created smallest file sizes of the shared libraries, it often wasted one
page in the read-write segment because of partial pages. When linker optimizes such that less space is wasted in partial
pages, the distance between read-only and read-write segments can be smaller than architecture specifiEaximum
page size.Prelink has to take this into account, so that when adjusting the sections the read-only and read-write
segment don’t end up on the same page. Unfortunatelink cannot increase or decrease the distance between the
read-only and read-write segments, since it is possible that the shared library has relative addresses of any allocated
code, data otbss sections stored in its sections without any relocations which would altelmk to change them.

Prelink has to move all sections starting with the first allocaeid PROGBITSsection other tharinterp up to the

last allocatedSHT.PROGBITSor SHT.NOBITS section as a block and thus needs to increase the adjustment in steps of
the highest section alignment as many times times as needed so that the segments end up in different pages. Below are
3 examples:

12ps special sectionprelink considers sections witBHT.NOTE SHT.HASHSHT.DYNSYMSHT.STRTAB SHT.GNUverdef |,
SHT.GNUverneed , SHT.GNUversym , SHT.REL or SHT_.RELAtype or the.interp section.

10 Draft 0.7 Prelink

48 $ cat > testl.c <<EOF

a0 int i[2] __ attribute__ ((aligned (32)));

a0 #define J1(N) int *j##N = &i[1];

an #define J2(N) JL(N##0) JI(N##1) JI(N##2) J1I(N##3) J1(N##4)
a2 #define J3(N) J2(N##0) J2(N##1) J2(N##2) J2(N##3) J2(N##4)
a3 #define J4(N) J3(N##0) J3(N##1) JI3(N##2) JI3(N##3) JI3(N##4)
472 J4(0) J4(1) J3(2) J3(3) J1(4)

475 const int 1[256] = { [10] = 1 }

as [* Put a zero sized section at the end of read-only segment,
477 so that the end address of the segment is printed. */
473 asm (".section ro_seg_end, \"a\"; .previous");

a9 EOF

a0 $ gcc -shared -O2 -nostdlib -fpic -0 testl.so testl.c

41 $ readelf -S testl.so | grep ™ \[

42 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al

w3 [0] NULL 00000000 000000 000000 00 0 0 O
aa [1] .hash HASH 000000b4 0000b4 000930 04 A 2 0 4
s [2] .dynsym DYNSYM 000009e4 0009e4 001430 10 A 3 d 4
a6 [3] .dynstr STRTAB 00001e14 00lel4 000735 00 A O 0 1
a7 [4] .rel.dyn REL 0000254c 00254c 000968 08 A 2 0 4
s [B] .text PROGBITS 00002eb4 002eb4 000000 00 AX O 0 4
a9 [6] .rodata PROGBITS 00002ecO 002ecO 000400 OO0 A O 0 32
a0 [7] ro_seg_end PROGBITS 000032c0 0032c0 000000 OO0 A 0O 0 1
w1 [8] .data PROGBITS 000042c0 0032cO 0004b4 00 WA O 0 4
a2 [9] .dynamic DYNAMIC 00004774 003774 000070 08 WA 3 0 4
a3 [10] .got PROGBITS 000047e4 0037e4 00000c 04 WA O 0 4
a4 [11] .bss NOBITS 00004800 003800 000008 0O WA O 0 32
a5 [12] .comment PROGBITS 00000000 003800 000033 00 0 0 1
a6 [13] .shstrtab STRTAB 00000000 003833 000075 00 0 0 1
a7 [14] .symtab SYMTAB 00000000 003b28 001470 10 15 11 4
a8 [15] .strtab STRTAB 00000000 004f98 000742 00 0 0 1
a9 $ readelf -l testl.so | grep LOAD

soo LOAD 0x000000 0x00000000 0x00000000 0x032c0 0x032cO0 R E 0x1000

s0 LOAD 0x0032c0 0x000042c0 0x000042c0 0x00530 0x00548 RW 0x1000

s2 $ prelink -N ./testl.so

sos $ readelf -I testl.so | grep LOAD

sa LOAD 0x000000 0x02000000 0x02000000 0x03780 0x03780 R E 0x1000

ss LOAD 0x003780 0x02004780 0x02004780 0x00530 0x00548 RW 0x1000

sos $ readelf -S testl.so | grep © \[

so7 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
sos [O] NULL 00000000 000000 000000 00 0 0 O
soe [1] .hash HASH 020000b4 0000b4 000930 04 A 2 0 4
so [2] .dynsym DYNSYM 020009e4 0009e4 001430 10 A 3 d 4
su [3] .dynstr STRTAB 02001el4 001el4 000735 000 A O 0 1
sz [4] .rel.dyn RELA 0200254c 00254c 000elc Oc A 2 0 4
sz [5] .text PROGBITS 02003374 003374 000000 00 AX O O 4
s.a [6] .rodata PROGBITS 02003380 003380 000400 00 A O 0 32
sis [7] ro_seg_end PROGBITS 02003780 003780 000000 00 A O 0 1
sis [8] .data PROGBITS 02004780 003780 0004b4 00 WA 0 0 4
sz [9] .dynamic DYNAMIC 02004c34 003c34 000070 08 WA 3 0 4
sis [10] .got PROGBITS 02004ca4 003ca4 00000c 04 WA O 0 4
si9 [11] .bss NOBITS 02004ccO 003ccO 000008 0O WA O 0 32
s20 [12] .comment PROGBITS 00000000 003ccO 000033 00 0 0 1
sz2 [13] .gnu.liblist GNU_LIBLIST 00000000 003cf3 000000 14 14 0 4

s2 [14] .gnu.libstr STRTAB 00000000 003cf3 000000 00 0 0 1

s23 [15] .gnu.prelink_undo PROGBITS 00000000 003cf4 00030c 01 0 0 4

sz« [16] .shstrtab STRTAB 00000000 004003 0000a0 00 0 0 1
sss [17] .symtab SYMTAB 00000000 0043a0 001470 10 18 11 4
s26 [18] .strtab STRTAB 00000000 005810 000742 00 0 0 1

Listing 3: Growing read-only segment with segment distance one page

sz In this example the read-write segment starts at ad@s&2s0 , which is one page above the end of read-only segment.

Jakub Jelinek Draft 0.7 11

s2s Prelink needs to grow the read-onBT_LOADsegment by 50% ofel.dyn
s20 heeds to round that up for the highest alignment (32 bytes requirecbdsta
s Sections abovael.dyn by 0x4c0 bytes.

size, i.e.0x4b4 bytes.Prelink just
or .bss sections) and moves all

ssi $ cat > test2.c <<EOF

s32 int i[2] __ attribute__ ((aligned (32)));

sz #define JL(N) int *##N = &i[1];

ss¢ #define J2(N) JL(N##0) JL(N##1) JL(N##2) JL(N##3) JL(N##4)
s3s #define J3(N) J2(N##0) J2(N##1) J2(N##2) J2(N##3) J2(N##4)
sss #define JA(N) J3(N##0) J3(N##1) J3(N##2) I3(N##3) J3(N#H#4)
ss7 J4(0) J4(1) J3(2) J3(3) J1(4)

s const int 1[256] = { [10] = 1 };

sse int K[670];

se0 asm (".section ro_seg_end, \"a\"; .previous");

sa1 EOF

s2 $ gcc -shared -O2 -nostdlib -fpic -0 test2.so test2.c

s3 $ readelf -S test2.so | grep © \[

sea [Nr] Name Type Addr Off Size ES Flg Lk Inf Al

ss [0] NULL 00000000 000000 000000 00 0O 0 O
s6 [1] .hash HASH 000000b4 0000b4 000934 04 A 2 0 4
se7 [2] .dynsym DYNSYM 000009e8 0009e8 001440 10 A 3 d 4
se¢ [3] .dynstr STRTAB 00001e28 001e28 000737 00O A O 0 1
se0 [4] .rel.dyn REL 00002560 002560 000968 08 A 2 0 4
sso [5] .text PROGBITS 00002ec8 002ec8 000000 OO AX O 0 4
sss [6] .rodata PROGBITS 00002ee0 002ee0 000400 OO A 0 0 32
s2 [7] ro_seg_end PROGBITS 000032e0 0032e0 000000 OO A O O 1
sss [8] .data PROGBITS 00004000 004000 0004b4 0O WA 0 0 4
sse [9] .dynamic DYNAMIC 000044b4 0044b4 000070 08 WA 3 0 4
sss [10] .got PROGBITS 00004524 004524 00000c 04 WA O O 4
sss [11] .bss NOBITS 00004540 004540 000a88 000 WA 0 0 32
ss7 [12] .comment PROGBITS 00000000 004540 000033 00 0 0 1
sss [13] .shstrtab STRTAB 00000000 004573 000075 00 0 0 1
sse [14] .symtab SYMTAB 00000000 004868 001480 10 15 11 4
sso [15] .strtab STRTAB 00000000 005ce8 000744 00 0 0 1

ser $ readelf -l test2.so | grep LOAD

ss2 LOAD 0x000000 0x00000000 0x00000000 0x032e0 0x032e0 R E 0x1000
563 LOAD 0x004000 0x00004000 0x00004000 0x00530 0x00fc8 RW 0x1000
sea $ prelink -N ./test2.so

ses $ readelf -l test2.so | grep LOAD

se6 LOAD 0x000000 0x02000000 0x02000000 0x037a0 0x037a0 R E 0x1000

se7 LOAD 0x0044c0 0x020044c0 0x020044c0 0x00530 0x00fc8 RW 0x1000

ses $ readelf -S test2.so | grep ™ \[

seo [Nr] Name Type Addr Off Size ES Flg Lk Inf Al

so [0] NULL 00000000 000000 000000 00 0O 0 O
s [1] .hash HASH 020000b4 0000b4 000934 04 A 2 0 4
sz [2] .dynsym DYNSYM 020009e8 0009e8 001440 10 A 3 d 4
s3 [3] .dynstr STRTAB 02001e28 001e28 000737 OO A 0 0 1
s [4] .rel.dyn RELA 02002560 002560 000elc 0c A 2 0 4
sis [5] .text PROGBITS 02003388 003388 000000 00O AX O 0 4
s.e [6] .rodata PROGBITS 020033a0 0033a0 000400 OO A 0 0 32
s7 [7] ro_seg_end PROGBITS 020037a0 0037a0 000000 OO A O 0 1
s.s [8] .data PROGBITS 020044c0 0044cO0 0004b4 OO WA 0 0 4
s79 [9] .dynamic DYNAMIC 02004974 004974 000070 08 WA 3 0 4
ss0 [10] .got PROGBITS 020049e4 0049e4 00000c 04 WA O 0 4
see [11] .bss NOBITS 02004a00 004a00 000a88 000 WA 0 0 32
sz [12] .comment PROGBITS 00000000 004a00 000033 00 0O 0 1
sss [13] .gnu.liblist GNU_LIBLIST 00000000 004a33 000000 14 14 0 4

sea [14] .gnu.libstr STRTAB 00000000 004a33 000000 00 0 0 1

sss [15] .gnu.prelink_undo PROGBITS 00000000 004a34 00030c 01 0O 0 4

sss [16] .shstrtab STRTAB 00000000 004d43 0000a0 00 0O 0 1
se7 [17] .symtab SYMTAB 00000000 0050e0 001480 10 18 11 4
sss [18] .strtab STRTAB 00000000 006560 000744 00 0 0 1

12 Draft 0.7

Prelink

Listing 4: Growing read-only segment not requiring additional padding

seo In the second examplarelink can grow by jusbx4cO bytes as well, eventhough the distance between read-write
s and read-only segment is justd20 bytes. With this distance, hypothetical adjustment by any size les0&uan

sa bytes (modulo 4096) would need just rounding up to the next multiple of 32 bytes, while adjustmentxdzimup

se2 t0 Oxfe0 would require adjustments in multiples of 4096 bytes.

s3 $ cat > test3.c <<EOF

soa iNt i[2] __ attribute__ ((aligned (32)));

sos #define JL(N) int *##N = &i[1];

sos #define J2(N) JL(N##0) JL(N##1) JL(N##2) JL(N##3) JL(N##4)
sor #define J3(N) J2(N##0) J2(N##1) J2(N##2) J2(N##3) J2(N##4)
sos #define JA(N) J3(N##0) J3(N##1) J3(N##2) I3(N##3) J3(N##4)
seo J4(0) J4(1) J3(2) J3(3) J1(4)

s00 int K[670];

sor asm (".section ro_seg_end, \"a\"; .previous");

s02 EOF

s03 $ gcec -shared -O2 -nostdlib -fpic -0 test3.so test3.c

s0s $ readelf -S test3.so | grep = \[

eos [Nr] Name Type Addr Off Size ES Flg Lk Inf Al

s [O] NULL 00000000 000000 000000 00 0 0 O
s7 [1] .hash HASH 000000b4 0000b4 00092c 04 A 2 0 4
e [2] .dynsym DYNSYM 000009e0 0009e0 001420 10 A 3 c 4
s [3] .dynstr STRTAB 00001e00 001e00 000735 00O A 0O 0 1
s0 [4] .rel.dyn REL 00002538 002538 000968 08 A 2 0 4
sun [5] .text PROGBITS 00002ea0 002ea0d 000000 OO AX O O 4
s2 [6] ro_seg_end PROGBITS 00002ea0 002ea0 000000 OO A O O 1
s13 [7] .data PROGBITS 00003000 003000 0004b4 000 WA 0 0 4
s [8] .dynamic DYNAMIC 000034b4 0034b4 000070 08 WA 3 0 4
e15 [9] .got PROGBITS 00003524 003524 00000c 04 WA O O 4
et [10] .bss NOBITS 00003540 003540 000a88 000 WA 0 0 32
67 [11] .comment PROGBITS 00000000 003540 000033 00 0 0 1
s18 [12] .shstrtab STRTAB 00000000 003573 00006d 00 0 0 1
s19 [13] .symtab SYMTAB 00000000 003838 001460 10 14 10 4
60 [14] .strtab STRTAB 00000000 004c98 000742 00 0 0 1
s $ readelf -l test3.so | grep LOAD

s22 LOAD 0x000000 0x00000000 0x00000000 0x02eald 0x02ea0 R E 0x1000

e2s LOAD 0x003000 0x00003000 0x00003000 0x00530 0x00fc8 RW 0x1000

s $ prelink -N ./test3.so
es $ readelf - test3.so | grep LOAD

66 LOAD 0x000000 0x02000000 0x02000000 0x03eald 0x03ea0 R E 0x1000

e27 LOAD 0x004000 0x02004000 0x02004000 0x00530 0x00fc8 RW 0x1000

o8 $ readelf -S test3.so | grep ™ \[

620 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al

s [O] NULL 00000000 000000 000000 00 o 0 O
ear [1] .hash HASH 020000b4 0000b4 00092c 04 A 2 0 4
622 [2] .dynsym DYNSYM 020009e0 0009e0 001420 10 A 3 ¢ 4
s3 [3] .dynstr STRTAB 02001e00 001e00 000735 000 A 0 0 1
e« [4] .rel.dyn RELA 02002538 002538 000elc Oc A 2 0 4
65 [5] .text PROGBITS 02003ea0 003ea0d 000000 00O AX O 0 4
es | 6] ro_seg_end PROGBITS 02003ea0 003ea0d 000000 OO A O 0 1
67 [7] .data PROGBITS 02004000 004000 0004b4 00 WA O 0 4
633 [8] .dynamic DYNAMIC 020044b4 0044b4 000070 08 WA 3 0 4
s9 [9] .got PROGBITS 02004524 004524 00000c 04 WA O O 4
s0 [10] .bss NOBITS 02004540 004540 000a88 00 WA O 0 32
e [11] .comment PROGBITS 00000000 004540 000033 00 0 0 1
s2 [12] .gnu.liblist GNU_LIBLIST 00000000 004573 000000 14 13 0 4

ss [13] .gnu.libstr STRTAB 00000000 004573 000000 00 0 0 1

saa [14] .gnu.prelink_undo PROGBITS 00000000 004574 0002e4 01 0 0 4

s5s [15] .shstrtab STRTAB 00000000 00485b 000098 00 0O 0 1
s [16] .symtab SYMTAB 00000000 004bc8 001460 10 17 10 4

Jakub Jelinek Draft 0.7 13

ea7 [17] .strtab STRTAB 00000000 006028 000742 00 0 0 1

Listing 5: Growing read-only segment if page padding needed

a8 IN the last example the distance betw@®InLOADsegments is very small, jugk160 bytes and the adjustment had to
ss0 be done by 4096 bytes.

8 Conflicts

0 As said earlier, if symbol lookup of some symbol in particular shared library results in different values when that
es1 Shared library’s natural search scope is used and when using search scope of the application the DSO is used in, this is
es2 considered aonflict. Here is an example of a conflict on I1A-32:

es3 $ cat > testl.c <<EOF

654 INt i;

55 INt ¥ = &i;

ese iNt *foo (void) { return &i; }
657 EOF

ess $ cat > test2.c <<EOF

659 INt i;

es0 INt *k = &i;

ee1 iNt *bar (void) { return &i; }
e62 EOF

ee3 $ cat > test.c <<EOF

es4 #include <stdio.h>

ees extern int i, *, *k, *foo (void), bar (void);

ee6 INt Main (void)

667 {

ecs Hifdef PRINT I

eeo printf ("%p\n", &i);

e70 #endif

ern printf ("%p %p %p %p\n", j, k, foo (), bar ());

672 }

673 EOF

o7 $ gcc -nostdlib -shared -fpic -s -0 testl.so testl.c

e7s $ gcc -nostdlib -shared -fpic -0 test2.so test2.c ./testl.so

o6 $ gcc -0 test test.c ./test2.so ./testl.so

o7 $.Jtest

o8 0x16137c 0x16137c 0x16137c 0x16137c

o9 $ readelf -r ./testl.so

680

es1 Relocation section '.rel.dyn’ at offset 0x2bc contains 2 entries:
ez Offset Info Type Sym.Value Sym. Name
es3 000012e4 00000d01 R_386_32 00001368 i

ssa 00001364 00000d06 R_386_GLOB_DAT 00001368 i
ess $ prelink -N ./test .Jtestl.so ./test2.s0

e $ LD_WARN= LD _TRACE_PRELINKING=1 LD_BIND_NOW=1 /lib/ld-linux.s0.2 ./testl.so

687 Jtestl.so => ./testl.so (0x04dbh6000, 0x00000000)

sss $ LD_WARN= LD_TRACE_PRELINKING=1 LD_BIND_NOW=1 /lib/ld-linux.s0.2 ./test2.so
689 Jtest2.so => ./test2.so (0x04dba000, 0x00000000)

690 Jtestl.so => ./testl.so (0x04dh6000, 0x00000000)

s01 $ LD_WARN= LD_TRACE_PRELINKING=1 LD_BIND_NOW=1 /lib/ld-linux.s0.2 ./test \
ez | sed 's/[[:space:]]*/ [/

e3 .Jtest => ./test (0x08048000, 0x00000000)

soa .Jtest2.so => .Jtest2.so (0x04dba000, 0x00000000)

eos .Jtestl.so => ./testl.so (0x04db6000, 0x00000000)

es libc.so.6 => /lib/tls/libc.s0.6 (0x00b22000, 0x00000000) TLS(Ox1, 0x00000028)

eo7 [lib/ld-linux.s0.2 => /lib/ld-linux.s0.2 (0x00b0a000, 0x00000000)

ss $ readelf -S ./testl.so | grep '\.data\|\.got’

e0 [6] .data PROGBITS 04db72e4 0002e4 000004 0O WA O 0 4

14 Draft 0.7 Prelink

0 [8] .got PROGBITS 04db7358 000358 000010 04 WA O O 4
701 $ readelf -r ./testl.so

702

703 Relocation section '.rel.dyn’ at offset Ox2bc contains 2 entries:

704 Offset Info Type Sym.Value Sym. Name
705 04db72e4 00000d06 R_386_GLOB_DAT 04db7368 i

706 04db7364 00000d06 R_386_GLOB_DAT 04db7368 i

707 $ objdump -s -j .got -j .data testl.so

708

700 testl.so: file format elf32-i386

710

1 Contents of section .data:

n2 4db72e4 6873db04 hs..

73 Contents of section .got:

74 4db7358 8120000 00000000 00000000 6873db04 hs..

ns $ readelf -r ./test | sed 'NA.gnu\.conflict/,$!d’

76 Relocation section '.gnu.conflict’ at offset Ox7ac contains 18 entries:

n7 Offset Info Type Sym.Value Sym. Name + Addend

78 04db72e4 00000001 R_386_32 04dbb37c
79 04db7364 00000001 R_386_32 04dbb37c
720 0056874 00000001 R_386_32 fffffffO

722 00c56878 00000001 R_386_32 00000001
722 00c568bc 00000001 R_386_32 fffffff4

723 00c56900 00000001 R_386_32 ffffffec

724 0056948 00000001 R_386_32 ffffffdc

725 00c5695c 00000001 R_386_32 fffffe0

726 00c56980 00000001 R_386_32 fffffff8

727 00c56988 00000001 R_386_32 ffffffed

728 00c569a4 00000001 R_386_32 ffffffd8

720 00c569c4 00000001 R_386_32 ffffffe8

730 00c569d8 00000001 R_386_32 080485hb8
73 00b1f510 00000007 R_386_JUMP_SLOT 00b91460
732 00b1f514 00000007 R_386_JUMP_SLOT 00b91080
733 00b1f518 00000007 R_386_JUMP_SLOT 00b91750
73 00b1f51c 00000007 R_386_JUMP_SLOT 00b912c0
735 00b1f520 00000007 R_386_JUMP_SLOT 00b91200
736 $.Jtest

737 0x4dbb37c¢ 0x4dbb37c 0x4dbb37c 0x4dbb37c

Listing 6: Conflict example

7228 In the example, among some conflicts caused by the dynamic linker and the C @&rwe is a conflict for the
720 Symboliin testl.so shared librarytestl.so has just itself in its natural symbol lookup scope (as proved by

720 LD.WARN= LO'RACEPRELINKING=1 LD_BIND_NOW=1 /lib/ld-linux.s0.2 ./testl.so

1 command output), so when looking up symldah this scope the definition itestl.so is chosen.testl.so has

2 two relocations against the symbgloneR 386 32 against.data section and on® 386 _GLOBDAT against.got

723 Section. When prelinkingestl.so library, the dynamic linker stores the address @x4db7368) into both locations

uas (at offsets Ox4db72e4 and 0x4db7364). The global symbol search scogse irexecutable contains the executable

us itself, test2.so andtestl.so libraries,libc.so0.6 and the dynamic linker in the listed order. When doing symbol

s lookup for symboliin testl.so when doing relocation processing of the whole executable, addrésste§t2.so

7 1S returned as that symbol comes earlier in the global search scope. So, when none of the libraries nor the executable
s 1S prelinked, the program prints 4 identical addresses. If prelink didn’t create conflict fixups for the two relocations

729 against the symbal in testl.so , prelinked executable (which bypasses normal relocation processing on startup)

70 Wwould print instead of the desired

Bparticularly in the example, theP 386 _.JUMPSLOTfixups arePLT slots in the dynamic linker for memory allocator functions resolving to
C library functions instead of dynamic linker's own trivial implementation. FirsRL886 _32 fixups at offsets 0xc56874 to 0xc569c4 are Thread
Local Storage fixups in the C library and the fixup at 0xc569d8 isKOrstdin_used weak undefined symbol in the C library, resolving to a symbol
with the same name in the executable.

Jakub Jelinek Draft 0.7 15

751 0x4dbb37c 0x4dbb37c 0x4dbb37c 0x4dbb37c
2 different addresses,
753 0x4db7368 0x4dbb37c¢ 0x4db7368 0x4dbb37c

74 That is a functionality change thatelink cannot be permitted to make, so instead it fixes up the two locations by
75 storing the desired value in there. In this caselink really cannot avoid that testl.so shared library could

756 be also used withouest2.so in some other executable’s symbol search scope. Or there could be some executable
757 linked with:

78 $ gcec -0 test2 test.c ./testl.so ./test2.so

Listing 7: Conflict example with swapped order of libraries

750 Wherei lookup intestl.so andtest2.so is supposed to resolve fdn testl.so

70 Now consider what happens if the executable is linked v#RINT _I :

71 $ gcc -DPRINT_I -0 test3 test.c ./test2.so ./testl.so

62 $./test3

763 0x804972¢c

764 0x804972c 0x804972c 0x804972c 0x804972c

765 $ prelink -N ./test3 ./testl.so ./test2.so

6 $ readelf -S ./test2.so | grep ’\.data\|\.got’

7 [6] .data PROGBITS 04dbb2f0 0002f0 000004 00 WA O O 4
s [8] .got PROGBITS 04dbb36c 00036¢c 000010 04 WA O 0 4
0 $ readelf -r ./ftest2.so

770

1 Relocation section '.rel.dyn’ at offset 0x2c8 contains 2 entries:
2 Offset Info Type Sym.Value Sym. Name
773 04dbb2f0 00000d06 R_386_GLOB_DAT 04dbb37c i

774 04dbb378 00000d06 R_386_GLOB_DAT 04dbb37c i

775 $ objdump -s -j .got -j .data test2.so

776

777 test2.so: file format elf32-i386

778

779 Contents of section .data:

70 4dbb2f0 7cb3db04 [...

71 Contents of section .got:

72 4dbb36c 4120000 00000000 00000000 7cb3db04 |...
753 $ readelf -r ./test3

784

785 Relocation section '.rel.dyn’ at offset 0x370 contains 4 entries:

786 Offset Info Type Sym.Value Sym. Name

77 08049720 00000e06 R_386_GLOB_DAT 00000000 __gmon_start__
788 08049724 00000105 R_386_COPY 08049724 |

780 08049728 00000305 R_386_COPY 08049728 k

790 0804972c 00000405 R_386_COPY 0804972c i

791

792 Relocation section '.rel.plt’ at offset 0x390 contains 4 entries:

793 Offset Info Type Sym.Value Sym. Name

704 08049710 00000607 R_386_JUMP_SLOT 080483d8 _ libc_start_main
795 08049714 00000707 R_386_JUMP_SLOT 080483e8 printf

796 08049718 00000807 R_386_JUMP_SLOT 080483f8 foo

707 0804971c 00000c07 R_386_JUMP_SLOT 08048408 bar

798

799 Relocation section ’.gnu.conflict’ at offset 0x7f0 contains 20 entries:

16 Draft 0.7 Prelink

s0 Offset Info Type Sym.Value Sym. Name + Addend

so1 04dbb2f0 00000001 R_386_32 0804972c

sz 04dbb378 00000001 R_386_32 0804972c

sz 04db72e4 00000001 R_386_32 0804972c

sos 04db7364 00000001 R_386_32 0804972c

sos 00c56874 00000001 R_386_32 fffffffO

sos 00c56878 00000001 R_386_32 00000001
sz 00c568bc 00000001 R_386_32 fffffff4

sos 00c56900 00000001 R_386_32 ffffffec

sos 0056948 00000001 R_386_32 ffffffdc

s10 00c5695¢c 00000001 R_386_32 ffffffe0

si1 00c56980 00000001 R_386_32 fffffff8

sz 00c56988 00000001 R_386_32 ffffffe4

s13 00c569a4 00000001 R_386_32 ffffffd8

s« 00c569c4 00000001 R_386_32 ffffffe8

s1s 00c569d8 00000001 R_386_32 080485f0

s16 0001510 00000007 R_386_JUMP_SLOT 00b91460
sz 00b1f514 00000007 R_386_JUMP_SLOT 00b91080
s1s 00b1f518 00000007 R_386_JUMP_SLOT 00b91750
s19 00b1f51c 00000007 R_386_JUMP_SLOT 00b912c0
s20 00b1f520 00000007 R_386_JUMP_SLOT 00091200

g1 $./test3
822 0x804972c
823 0x804972c 0x804972c 0x804972c 0x804972c

Listing 8: Conflict example with COPY relocation for conflicting symbol

22« Because the executable is not compiled as position independent codaianélinction takes address éfvariable,

g2s the object file fortest3.c contains aR.386 _32 relocation against. The linker cannot make dynamic relocations
s2s against read-only segment in the executable, so the addréssust be constant. This is accomplished by creating a
s27 NEW objecti in the executable’'slynbss section and creating a dynani®c386 _COPYrelocation for it. The relocation

a8 ensures that during startup the content object earliest in the search scope without the executable is copied o this
s20 Object in executable. Now, unlikest executable, inest3 executable lookups in bothestl.so andtest2.so

s20 libraries result in address éfn the executable (instead kt2.so). This means that two conflict fixups are needed
sa1 again fortestl.so (but storing 0x804972c instead of 0x4dbb37c) and two new fixups are needest®o

N

32 If the executable is compiled as position independent code,

s3s $ gece -fpic -DPRINT_I -0 test4 test.c ./test2.so ./testl.so

su $./testd
835 Ox4dbb37¢c
836 0x4dbb37c¢c 0x4dbb37c 0x4dbb37c 0x4dbb37c

Listing 9: Conflict example with position independent code in the executable

g7 the address dfis stored in executable!got section, which is writable and thus can have dynamic relocation against it.
s SO the linker createsR386 _GLOBDATrelocation against thgot section, the symbalis undefined in the executable
sse and no copy relocations are needed. In this case,tesly.so will need 2 fixupstest2.so will not need any.

s0 There are various reasons for conflicts:

8 e Improperly linked shared libraries. If a shared library always needs symbols from some particular shared library,
842 it should be linked against that library, usually by addihgBNAME to gcc -shared command line used

843 during linking of the shared library. This both reduces conflict fixupgrétink and makes the library easier

to load usingdlopen , because applications don’t have to remember that they have to load some other library

845 first. The best place to record the dependency is in the shared library itself. Another reason is if the needed
846 library uses symbol versioning for its symbols. Not linking against that library can result in malfunctioning

b
s

844

Jakub Jelinek Draft 0.7 17

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

shared libraryPrelink issues a warning for such librarie8varning: library has undefined non-weak

symbols . When linking a shared library, th&vl,-z,defs option can be used to ensure there are no such
undefined non-weak symbols. There are exceptions, when undefined non-weak symbols in shared libraries are
desirable. One exception is when there are multiple shared libraries providing the same functionality, and a
shared library doesn't care which one is used. An example can bkbesgdline.so.4 , Which needs some
terminal handling functions, which are provided be eitligermcap.so.2 , Or libncurses.so0.5 . Another
exception is with plugins or other shared libraries which expect some symbols to be resolved to symbols defined
in the executable.

A library overriding functionality of some other library. One example is e.g. C library and POSIX thread library.
Older versions of the GNU C library did not provide cancelable entry points required by the standard. This is not
needed for non-threaded applications. So onlylitighread.so0.0 shared library which provides POSIX
threading support then overrode the cancellation entry points required by the standard by wrapper functions
which provided the required functionality. Although most recent versions of the GNU C library handle can-
cellation even in entry points ilibc.so.6 (this was needed for cases whie.so.6 comes earlier before
libpthread.so0.0 in symbol search scope and used to be worked around by non-standard handling of weak
symbols in the dynamic linker), because of symbol versioning the symbols had to Skgyhiread.so.0 as

well as inlibc.so.6 . This means every program using POSIX threads on Linux will have a couple of conflict
fixups because of this.

Programs which need copy relocations. Althopgtlink will resolve the copy relocations at prelinking time,

if any shared library has relocations against the symbol which needed copy relocation, all such relocations will
need conflict fixups. Generally, it is better to not export variables from shared libraries in their APIs, instead
provide accessor functions.

Function pointer equality requirement for functions called from executables. When address of some global
function is taken, at least C and C++ require that this pointer is the same in the whole program. Executables
typically contain position dependent code, so when code in the executable takes address of some function not
defined in the executable itself, that address must be link time constant. Linker accomplishes this by creating a
PLT slot for the function unless there was one already and resolving to the addriseibt. The symbol for

the function is created witht _value equal to address of thHeLT slot, butst _shndx set toSHNUNDEF Such
symbols are treated specially by the dynamic linker, in Ehat relocations resolve to first symbol in the global
search scope after the executable, while symbol lookups for all other relocation types return the address of the
symbol in the executable. Unfortunately, GNU linker doesn't differentiate between taking address of a function
in an executable (especially one for which no dynamic relocation is possible in case it is in read-only segment)
and just calling the function, but never taking its address. If it clearedtthealue field of the SHNUNDEF
function symbols in case nothing in the executable takes the function’s address, pvigkal conflict could
disappear §HNUNDEFsymbols withst _value set to O are treated always as real undefined symbols by the
dynamic linker).

COMDATode and data in C++. C++ language has several places where it may need to emit some code or data
without a clear unique compilation unit owning it. Examples include taking addresdndiren function, local

static variable innline functions, virtual tables for some classes (this dependgpagma interface or

#pragma implementation presence, presence of non-inline non-pure-virtual member function in the class,
etc.),RTTI info for them. Compilers and linkers handle these using vartgiDATchemes, e.g. GNU linker's
.gnu.linkonce* special sections or usingHT. GROUPUnfortunately, all these duplicate merging schemes
work only during linking of shared libraries or executables, no duplicate removal is done across shared libraries.
Shared libraries typically have relocations against t@MDATode or data objects (otherwise they wouldn't be

at least in most cases emitted at all), so if thereGD®&DATuplicates across shared libraries or the executable,
they lead to conflict fixups. The linker theoretically could try to mez@DATuplicates across shared libraries

if specifically requested by the user (ifGOMDABymbol is already present in one of the dependent shared
libraries and isSTBWEAKthe linker could skip it). Unfortunately, this only works as long as the user has full
control over the dependent shared libraries, because@DABYymbol could be exported from them just as a

side effect of their implementation (e.g. they use some class internally). When such libraries are rebuilt even
with minor changes in their implementation (unfortunately with C++ shared libraries it is usually not very clear
what part is exported ABI and what is not), some of the€gMDABymbols in them could go away (e.g. because
suddenly they use a different class internally and the previously used class is not referenced anywhere). When
COMDADDbjects are not merged across shared libraries, this makes no problems, as each library which needs the
COMDAMas its own copy. But witikOMDATuplicate removal between shared libraries there could suddenly be
unresolved references and the shared libraries would need to be relinked. The only place where this could work

18

Draft 0.7 Prelink

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

924

925

926

927

928

929

930

931

932

933

934

935

93

=

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

safely is when a single package includes several C++ shared libraries which depend on each other. They are then
shipped always together and when one changes, all others need changing too.

9 Prelink optimizations to reduce number of conflict fixups

Prelink can optimize out some conflict fixups if it can prove that the changes are not observable by the application
at runtime (opening its executable and reading it doesn’t count). If there is a data object in some shared library with
a symbol that is overridden by a symbol in a different shared library earlier in global symbol lookup scope or in
the executable, then that data object is likely never referenced and it shouldn't matter what it contains. Examine the
following example:

$ cat > testl.c <<EOF

int i, j, k;

struct A { int *a; int *b; int *c; } x = { &i, &, &K }
struct A *y = &x;

EOF
$ cat > test2.c <<EOF
int i, j, k;

struct A { int *a; int *b; int *c; } x = { &, &, &k };
struct A *z = &x;

EOF

$ cat > test.c <<EOF

#include <stdio.h>

extern struct A { int *a; int *b; int *c; } *y, *z;

int main (void)

{
printf ("%p: %p %p %p\n", y, y->a, y->b, y->C);
printf ("%p: %p %p %p\n", z, z->a, z->b, z->c);
}
EOF

$ gce -nostdlib -shared -fpic -s -0 testl.so testl.c

$ gcc -nostdlib -shared -fpic -0 test2.so test2.c ./testl.so
$ gcc -0 test test.c ./test2.so ./testl.so

$.Jltest

0xaf3314: 0xaf33b0 Oxaf33a8 Oxaf33ac

Oxaf3314: 0xaf33b0 Oxaf33a8 Oxaf33ac

Listing 10: C example where conflict fixups could be optimized out

In this example there are 3 conflict fixups pointing into the 12 byte loobject intestl.so shared library (among

other conflicts). And nothing in the program can poke abntent intestl.so , simply because it has to look at it
throughx symbol which resolves test2.so . So in this caserelink could skip those 3 conflicts. Unfortunately it
is not that easy:

$ cat > test3.c <<EOF

int i, j, k;

static struct A { int *a; int *b; int *c; } local = { &i, &, &k };
extern struct A Xx;

struct A *y = &x;

struct A *y2 = &local;

extern struct A x __attribute__ ((alias ("local)));

EOF

$ cat > testd.c <<EOF

#include <stdio.h>

extern struct A { int *a; int *b; int *c; } *y, *y2, *z;
int main (void)

{

Jakub Jelinek Draft 0.7 19

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

96

2

96

S

96

©

97

o

97.

oy

97.

N

97

@

974

97!

o

97

=

97

N

97!

=

97!

©

98|

S

98:

2

98

R

98

@

984

98!

o

98!

-

98

Q

98

@

98

©

990

991

992

993

994

995

996

997

998

999

1000

1001

printf ("%p: %p %p %p\n", y, y->a, y->b, y->c);
printf ("%p: %p %p %p\n", y2, y2->a, y2->b, y2->c);
printf ("%p: %p %p %p\n", z, z->a, z->b, z->c);

}

EOF

$ gcc -nostdlib -shared -fpic -s -0 test3.so test3.c

$ gcc -nostdlib -shared -fpic -0 test4.so test2.c ./test3.so

$ gcc -0 testd testd.c ./testd.so ./test3.so

$.ftest4

0x65a314: 0x65a3b0 0x65a3a8 Ox65a3ac

0xbd1328: 0x65a3b0 0x65a3a8 Ox65a3ac

0x65a314: 0x65a3b0 0x65a3a8 Ox65a3ac

Listing 11: Modified C example where conflict fixups cannot be removed

In this example, there are again 3 conflict fixups pointing into the 12 byte targject intest3.so shared library.

The fact that variable local is located at the same 12 bytes is totally invisible to prelink, as lo&alEs @CALsymbol

which doesn't show up indynsym section. But if those 3 conflict fixups are removed, then suddenly program'’s
observable behavior changes (the last 3 addresses on second line would be different than those on first or third line).

Fortunately, there are at least some objects wipegtink can be reasonably sure they will never be referenced
through some local alias. Those are various compiler generated objects with well defined meaning pvbiick is

able to identify in shared libraries. The most important ones are C++ virtual tableRTaridlata. They are emitted

as COMDAT data by the compiler, in GCC intgnu.linkonce.d.* sections. Data or code in these sections can

be accessed only through global symbols, otherwise linker might create unexpected results when two or more of these
sections are merged together (all but one deleted). Wietink is checking for such data, it first checks whether the
shared library in question is linked agaifisstdc++.so . If not, it is not a C++ library (or incorrectly built one) and

thus it makes no sense to search any further. It looks onliaia section, foISTB.WEAK STIOBJECTsymbols whose

names start with certain prefix@and where no other symbols (in dynamic symbol table) point into the objects. If
these objects are unused because there is a conflict on their symbol, all conflict fixups pointing into the virtual table or
RTTI structure can be discarded.

Another possible optimization is again related to C++ virtual tables. Function addresses in them are not intended for
pointer comparisons. C++ code only loads them from the virtual tables and calls through the pointer. Pointers to
member functions are handled differently. As pointer equivalence is the only reason why all function pointers resolve
to PLT slots in the executable even when the executable doesn't include implementation of the function (i.e. has
SHNUNDEFRsymbol with non-zerat _value pointing at thePLT slot in the executableprelink can resolve method
addresses in virtual tables to the actual method implementation. In many cases this is in the same library as the virtual
table (or in one of libraries in its natural symbol lookup scope), so a conflict fixup is unnecessary. This optimization
speeds up programs also after control is transfered to the application and not just the time to start up the application,
although just a few cycles per method call.

The conflict fixup reduction is quite big on some programs. Below is statisticknfait program on completely
unprelinked box:

$ LD_DEBUG=statistics /usr/bin/kmail 2>&1 | sed '2,8!d;s/” */I'

10621: total startup time in dynamic loader: 240724867 clock cycles

10621: time needed for relocation: 234049636 clock cycles (97.2%)
10621: number of relocations: 34854

10621: number of relocations from cache: 74364

10621: number of relative relocations: 35351

10621: time needed to load objects: 6241678 clock cycles (2.5%)

$ Is -l Jusr/bin/kmail

-FWXI-Xr-X 1 root root 2149084 Oct 2 12:05 /usr/bin/kmail

$ (Xvfb :3 &) >/dev/null 2>&1 </dev/null; sleep 20
$ (DISPLAY=:3 kmail&) >/dev/null 2>&1 </dev/null; sleep 10; killall kmail
$ (DISPLAY=:3 kmail&) >/dev/null 2>&1 </dev/null; sleep 10

14__vt _for GCC 2.95.x and 2.96-RH virtual tableZ TV for GCC 3.x virtual tables andZT| for GCC 3.xRTTI data.

20 Draft 0.7 Prelink

1002 $ cat /proc/‘/sbin/pidof kmail‘/statm
w03 4164 4164 3509 224 33 3907 655
w04 $ killall Xvfb kdeinit kmail

Listing 12: Statistics for unprelinkeinail

w005 Statm special file for a process contains its memory statistics. The numbers in it mean in order total number of used

1006 Pages (on IA-32 Linux a page is 4KB), number of resident pages (i.e. not swapped out), number of shared pages,
100z NUMber of text pages, number of library pages, number of stack and other pages and number of dirty pages used by
108 the process. Distinction between text and library pages is very rough, so those numbers aren’t that much useful. Of

w00 iNterest are mainly first number, third number and last number.

110 Statistics forkkmail on completely prelinked box:

o $ LD_DEBUG=statistics /usr/bin/kmail 2>&1 | sed '2,8!d;s/” */I’

1012 14864: total startup time in dynamic loader: 8409504 clock cycles

1013 14864: time needed for relocation: 3024720 clock cycles (35.9%)
1012 14864 number of relocations: 0

1015 14864 number of relocations from cache: 8961

1016 14864 number of relative relocations: 0

1017 14864: time needed to load objects: 4897336 clock cycles (58.2%)
w018 $ Is - /usr/bin/kmail

1019 -FWXTI-Xr-X 1 root root 2269500 Oct 2 12:05 /usr/bin/kmail

w020 $ (Xvfb :3 &) >/devinull 2>&1 </dev/null; sleep 20

102 $ (DISPLAY=:3 kmail&) >/dev/null 2>&1 </dev/null; sleep 10; killall kmail
1022 $ (DISPLAY=:3 kmail&) >/dev/null 2>&1 </dev/null; sleep 10

1023 $ cat /proc/‘/sbin/pidof kmail‘/statm

1024 3803 3803 3186 249 33 3521 617

w25 $ killall Xvfb kdeinit kmail

Listing 13: Statistics for prelinkekimail

w26 Statistics folkmail on completely prelinked box with C++ conflict fixup optimizations turned off:

1027 $ LD_DEBUG=statistics /usr/bin/kmail 2>&1 | sed '2,8!d;s/” *II’

1028 20645: total startup time in dynamic loader: 9704168 clock cycles

1020 20645: time needed for relocation: 4734715 clock cycles (48.7%)
1030 20645: number of relocations: 0

1031 20645 number of relocations from cache: 59871

1032 20645: number of relative relocations: 0

1033 20645: time needed to load objects: 4487971 clock cycles (46.2%)
1034 Is - /usr/bin/kmail

1035 -FWXI-Xr-X 1 root root 2877360 Oct 2 12:05 /usr/bin/kmail

103 $ (Xvfb :3 &) >/dev/null 2>&1 </dev/null; sleep 20

1037 $ (DISPLAY=:3 kmail&) >/dev/null 2>&1 </dev/null; sleep 10; killall kmail
108 $ (DISPLAY=:3 kmail&) >/dev/null 2>&1 </dev/null; sleep 10

1030 $ cat /proc/‘/sbin/pidof kmail‘/statm

1000 3957 3957 3329 398 33 3526 628

1041 $ killall Xvfb kdeinit kmail

Listing 14: Statistics for prelinkekimail without conflict fixup reduction

142 ON this application, C++ conflict fixup optimizations saved 50910 unneeded conflict fixups, speeded up startup by
143 13.3% and decreased number of dirty pages by 11, which means the application needs 44KB less memory per-process.

Jakub Jelinek Draft 0.7

10 Thread Local Storage support

14 Thread Local Storage ([12], [13], [14]) support has been recently added to GCC, GNU binutils and GNU C Li-
145 brary. TLS support is a set of new relocations which together with dynamic linker and POSIX thread library addi-
146 tions provide faster and easier to use alternative to traditional POSIX thread local datatt&dd _getspecific

1047 pthread _setspecific , pthread _key *).

148 TLS necessitated several changegitglink . Thread Local symbols (with typ®TT_TLS) must not be relocated, as

149 they are relative to the start 8ff_TLS segment and thus not virtual addresses. The dynamic linker had to be enhanced
w50 SO that it tellgprelink at LD_.TRACEPRELINKING time whatTLS module IDs have been assigned and what addresses
s relative to start offLS block have been given toT_TLS segment of each library or executable. There are 3 classes of
10s2 NEWTLS dynamic relocationgrelink is interested in (with different names on different architectures).

ws3 In first class are module 1D relocations, which are used f&Global Dynamic and Local Dynamic models (for Global

s« Dynamic model they are supposed to resolve to module ID of the executable or shared library of p&Ticias

10ss Symbol, for Local Dynamic model this resolves to module ID of the containing shared library). These relocations are
1ss hard to prelink in any useful way without moving.S module ID assignment from the dynamic linkergelink

10s7 Although prelink can find out what shared library will contain particuleFT_TLS symbol unless there will be

wss conflicts for that symbol, it doesn’t know how many shared libraries ®RittTLS segment will precede it or whether

1059 €Xecutable will or will not haveeT_TLS segment. UntilTLS is widely deployed by many librariegrelink could

1060 gUESS that onlyibc.so will have PT_TLS and store 1 (first module ID the dynamic linker assigns), but given that
e libc.so uses just one such relocation it is not probably worth doing this when soon other shared libraries besides
we2 libc.so andlibGL.so start using it heavily. Because of thigelink doesn’t do anything special when prelinking

1063 Shared libraries with these relocations and for each relocations in this class creates one conflict fixup.

wea IN second class are relocations which resolvettozalue of someSTT_TLS symbol. These relocations are used in
1065 Global DynamicTLS model (in Local Dynamic they are resolved at link time already) and fpostink point of
106 View they are much more similar to normal relocations than the other two classes. WIsaiTthies symbol is looked
1067 UP successfully in shared library’s natural search scpmdink just stores itst _value into the relocation. The
1068 Chances there will be a conflict are even smaller than with normal symbol lookups, since overltigglisygmbols
106s Means wasted memory in each single thread and thus library writers will try to avoid it if possible.

w70 The third class includes relocations which resolve to offsets within program’s imiﬂablockﬁ Relocation in this

wn class are used in Initial Exét.S model (or in Local Exec model if this model is supported in shared libraries). These
w72 Offsets are even harder to predict than module IDs and unlike module IDs it wouldn’t be very helpful if they were
w73 assigned byrelink instead of dynamic linker (which would just read them from some dynamic tag). That's because
w72 TLS block needs to be packed tightly and any assignmentselimk couldn’t take into account other shared libraries

wrs linked into the same executable and the executable itself. Similarly to module ID relocatieing doesn’t do

w7 anything about them when prelinking shared libraries and for each such relocation creates a conflict fixup.

11 Prelinking of executables and shared libraries

1077 Rewriting of executables is harder than for shared libraries, both because there are more changes necessary and because
w78 Shared libraries are relocatable and thus have dynamic relocations for all absolute addresses.

w79 After collecting all information from the dynamic linker and assigning virtual address space slots to all shared libraries,

180 prelinking of shared libraries involves following steps:

1081 e Relocation of the shared library to the assigned base address.
1082 e RELto RELAconversion if needed (the only step which changes sizes of allocated sections in the middle).

1083 e On architectures which ha@®HT.NOBITS .plt sections, before relocations are applied the section needs to

1084 be converted t&HT.PROGBITS As the section needs to be at the end (or after it) of file backed part of some
1085 PT_LOADsegment, this just means that the file backed up part needs to be enlarged, the file filled with zeros
1086 and all following section file offsets or program header entry file offsets adjustecSHAINOBITS sections in

15Negative on architectures which haV¥é.S block immediately below thread pointer (e.g. 1A-32, AMD64, SPARC, S/390) and positive on
architectures which havELS block at thread pointer or a few bytes above it (e.g. PowerPC, Alpha, 1A-64, SuperH).

22 Draft 0.7 Prelink

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

the samePT_LOADsegment with virtual addresses lower than e start address need to be converted from
SHTNOBITS to SHT.PROGBITStoo. Without making the sectioBHT. PROGBITS prelink cannot apply relo-
cations against it as such sections contain only zeros. ArchitectureSMitNOBITS .plt section supported
by prelink are PowerPC and PowerPC64.

Applying relocations. For each dynamic relocation in the shared library, address of relocation’s symbol looked
up in natural symbol lookup search scope of the shared library (or O if the symbol is not found in that search
scope) is stored in an architecture and relocation type dependent way to memory pointefisby field of

the relocation. This step uses symbol lookup information provided by dynamic linker.

Addition or modification ofDT.CHECKSUN\nd DT_.GNUPRELINKED dynamic tags.ﬁ The former is set to
checksum of allocated sections in the shared library, the latter to time of prelinking.

On architectures which don’t use writabpdt , but instead usgyot.plt (this section is merged during linking

into .got) section,prelink typically stores address into the first PLT slot.pit section to the reserved
second word ofgot section. On these architectures, the dynamic linker has to initiglize section if lazy
binding. On non-prelinked executables or shared libraries this typically means adding load offset to the values
in .got.plt section, for prelinked shared libraries or executables if prelinking information cannot be used it
needs to compute the right valuesdot.plt ~ section without looking at this section’s content (since it contains
prelinking information). The second word igot section is used for this computation.

Addition of .gnu _prelink _undo unallocated section if not present yet. This section is usqatdink inter-
nally during undo operation.

Addition of .gnu _liblist and.gnu _libstr unallocated sections or, if they are already present, their update
including possible growing or shrinking. These sections are used onbyebigk to compare the dependent
libraries (and their order) at the time when the shared library was prelinked against current dependencies. If a
shared library has no dependencies (e.g. dynamic linker), these sections are not present.

110 Adding or resizing unallocated section needs just file offsets of following unallocated sections recomputed (ensuring
un proper alignment), growing section header table ahstrtab ~ and adding new section names to that section.

112 Prelinking of executables involves following steps:

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

REL to RELAconversion if needed.

SHT.NOBITS to SHT.PROGBITSconversion ofplt section if needed.

Applying relocations.

Addition or resizing of allocatedynu.conflict section containing list of conflict fixups.

Addition or resizing of allocatedynu.liblist section which is used by the dynamic linker at runtime to see
if none of the dependencies changed or were reordered. If they were, it continues normal relocation processing,
otherwise they can be skipped and only conflict fixups applied.

Growing of allocateddynstr section, where strings referenced framu.liblist section need to be added.

If there are any COPY relocations (whiptelink wants to handle rather than deferring them as conflict fixups
to runtime), they need to be applied.

Modifying second word ingot section for.got.plt using architectures.

Addition or adjusting of dynamic tags which allow the dynamic linker to findghe.liblist and.gnu.conflict
sections and their size®T.GNUCONFLICT and DT.GNUCONFLICTSZshould be present if there are any con-
flict fixups. It should contain the virtual address of tigau.conflict section start resp. its size in bytes.
DT_.GNULIBLIST andDT.GNULIBLISTSZ need to be presentin all prelinked executables and must be equal the
to virtual address of thgynu.liblist section and its size in bytes.

Addition of .gnu _prelink _undo unallocated section if not present.

16prelink is not able to growdynamic section, so it needs some spare dynamic tagsKIDLL) at the end of.dynamic section.
GNU linker versions released after August 2001 leave space by default.

Jakub Jelinek Draft 0.7 23

1130 Executables can have absolute relocations already applied (and without a dynamic relocation) to virtually any allocated
s SHT.PROGBITSsection'} against almost all allocate8HT PROGBITSand SHT.NOBITS sections. This means that

122 When growing, adding or shrinking allocated sections in executableSHalPROGBITSand SHT.NOBITS section

133 must keep their original virtual addresses and @Prelink tries various places where to put allocated sections

134 Which were added or grew:

1135 e In the unlikely case if there is already some gap between sections in rea@DhlyADsegment where the
1136 section fits.

1137 o If the SHT.NOBITS sections are small enough to fit into a page together with the prec&tmngROGBITS

1138 section and there is still some space in the page aftesHTeNOBITS sections. In this caserelink converts

1139 the SHT.NOBITS sections intcSHT.PROGBITSsections, fills them with zeros and adds the new section after it.
1140 This doesn't increase number BT_LOADsegments, but unfortunately those added sections are writable. This
1141 doesn’t matter much for e.ggnu.conflict section which is only used before control is transfered to the
1142 program, but could matter fodynstr ~ which is used even duringjopen .

1143 e On |A-32, executables have for historical reasons base address 0x8048000. The reason for this was that when

1144 stack was put immediately below executables, stack and the executable could coexist in the same second level
1145 page table. Linux puts the stack typically at the end of virtual address space and so keeping this exact base
1146 address is not really necessamyrelink can decrease the base address and thus increase size of read-only
1147 PT_LOADsegment whil&SHT.PROGBITSandSHT.NOBITS section can stay at their previous addresses. Just their

1148 file offsets need to be increased. All these segment header adjustments need to be done in mulbpkies of

1149 page sizes, so evenfelink chose to do similar things on architectures other than 1A-32 which typically

1150 start executables on some address which is a power of 2, it would be only reasori&tHedge size on that

1151 architecture (which can be much bigger than page size used by the operating system) is very small.

1152 e Last possibility is to create a neWT,LOADsegment.ﬁ Section immediately above program header table

1153 (typically .interp) has to be moved somewhere else, but if possible close to the beginning of the executable.
1154 The newPT_LOADsegment is then added after the IBSILOADSegment. The segment has to be writable even

1155 when all the sections in it are read-only, unless it ends exactly on a page boundary, lekaasea starts

1156 immediately after the end of laBT_LOADsegment and the executable expects it to be writable.

us7 SO that verification works properly, if there.ghu.prelink _undo section in the executablprelink first reshuffles
uss the sections and segments for the purpose of finding places for the sections to the original sequence as recorded in the
1se .gnu.prelink _undo section. Examples of the above mentioned cases:

us0 $ SEDCMD="s/".* \.plt.*$/.../;\[.*\.text/,\[.*\.got/d’

ust $ SEDCMD2="/Section to Segment/,$d;/"Key to/,/"Program/d;/[A-Z)/d;/" *$/d’
uez $ cat > testl.c <<EOF

163 int main (void) { return 0; }

1164 EOF

ues $ gecc -WI,--verbose 2>&1 \

ues | sed '['===//===/ld;/"===/d;s/\.rel\.dyn/. += 512; &/ > testl.lds

ue7 $ gec -s -O2 -0 testl testl.c -WI,-T,testl.lds

ues $ readelf -Sl ./testl | sed -e "$SEDCMD" -e "$SEDCMD2"

1es [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
uro [0] NULL 00000000 000000 000000 00 o 0 O
unn [1] .interp PROGBITS 08048114 000114 000013 00O A O O 1
uz [2] .note.ABl-tag NOTE 08048128 000128 000020 0O A O 0 4
uzs [3] .hash HASH 08048148 000148 000024 04 A 4 0 4
ue [4] .dynsym DYNSYM 0804816¢c 00016c 000040 10 A 5 1 4
urs [5] .dynstr STRTAB 080481ac 000lac 000045 000 A O 0 1
uz [6] .gnu.version VERSYM 080481f2 0001f2 000008 02 A 4 0 2
urz [7] .gnu.version_r VERNEED 080481fc 0001fc 000020 00 A 5 1 4

us [8] .rel.dyn REL 0804841c 00041c 000008 08 A 4 0 4

170One exception isinterp special section. It shouldn’t have relocations applied to it, nor any other section should reference it.

18with a notable exception of splitting one section into two covering the same virtual address range.

B9Linux kernels before 2.4.10 loaded executables which had mei@id OADsegment withp_memszbigger tharp _filesz incorrectly, so
prelink should be only used on systems with 2.4.10 or later kernels.

24 Draft 0.7 Prelink

we [9] .rel.plt REL 08048424 000424 000008 08 A 4 b 4

uso [10] .init PROGBITS 0804842c 00042c 000017 00 AX O O 4
1181 ...

us2 [22] .bss NOBITS 0804968 0006f8 000004 00O WA O 0 4
uss [23] .comment PROGBITS 00000000 0006f8 000132 00 0 0 1
usa [24] .shstrtab STRTAB 00000000 00082a 0000be 00 0 0 1
uss Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

uss PHDR 0x000034 0x08048034 0x08048034 0x000e0 0x000e0 R E Ox4

1187 INTERP 0x000114 0x08048114 0x08048114 0x00013 0x00013 R Ox1

1188 [Requesting program interpreter: /lib/ld-linux.so.2]

uss LOAD 0x000000 0x08048000 0x08048000 0x005fc 0x005fc R E 0x1000

1190 LOAD 0x0005fc 0x080495fc 0x080495fc 0x000fc 0x00100 RW 0x1000

uer DYNAMIC 0x000608 0x08049608 0x08049608 0x000c8 0x000c8 RW 0x4

nez NOTE 0x000128 0x08048128 0x08048128 0x00020 0x00020 R 0x4

ues STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4

uea $ prelink -N ./testl
ues $ readelf -SI .Jtestl | sed -e "$SEDCMD" -e "$SEDCMD2"

ues [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
uer [0] NULL 00000000 000000 000000 00 0O 0 O
ues [1] .interp PROGBITS 08048114 000114 000013 00O A O O 1
ue [2] .note.ABl-tag NOTE 08048128 000128 000020 OO A O O 4
1200 [3] .hash HASH 08048148 000148 000024 04 A 4 0 4
o1 [4] .dynsym DYNSYM 0804816c 00016c 000040 10 A 8 1 4
w22 [5] .gnu.liblist GNU_LIBLIST 08048lac 000lac 000028 14 A 8 0 4

w3 [6] .gnu.version VERSYM 080481f2 0001f2 000008 02 A 4 0 2
wosa [7] .gnu.version_r VERNEED 080481fc 0001fc 000020 00 A 8 1 4

12os [8] .dynstr STRTAB 0804821c 00021c 000058 0O A O O 1
wos [9] .gnu.conflict RELA 08048274 000274 0000cO Oc A 4 0 4

107 [10] .rel.dyn REL 0804841c 00041c 000008 08 A 4 0 4
w208 [11] .rel.plt REL 08048424 000424 000008 08 A 4 d 4
wos [12] .init PROGBITS 0804842c 00042c 000017 00O AX O O 4
1210 ...

w2 [24] .bss NOBITS 0804968 0006f8 000004 00O WA O O 4
w2 [25] .comment PROGBITS 00000000 0006f8 000132 00 0 0 1
1213 [26] .gnu.prelink_undo PROGBITS 00000000 00082c 0004d4 01 0O 0 4
1214 [27] .shstrtab STRTAB 00000000 000dO0 0000eb 00 0 0 1
s Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

1216 PHDR 0x000034 0x08048034 0x08048034 0x000e0 0x000e0 R E Ox4

1217 INTERP 0x000114 0x08048114 0x08048114 0x00013 0x00013 R Ox1

1218 [Requesting program interpreter: /lib/ld-linux.so.2]

1219 LOAD 0x000000 0x08048000 0x08048000 0x005fc 0x005fc R E 0x1000

1220 LOAD 0x0005fc 0x080495fc 0x080495fc 0x000fc 0x00100 RW 0x1000

w1 DYNAMIC 0x000608 0x08049608 0x08049608 0x000c8 0x000c8 RW 0x4

1222 NOTE 0x000128 0x08048128 0x08048128 0x00020 0x00020 R 0x4

1223 STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW Ox4

Listing 15: Reshuffling of an executable with a gap between sections

1224 IN the above sample, there was enough space between sections (particularly between the egouofetts@on
1225 Section and the start akl.dyn) that the new sections could be added there.

1226 $ SEDCMD="s/".* \.plt.*$/.../;\[.*\.text/,\[.*\.got/d’

1227 $ SEDCMD2="/Section to Segment/,$d;/"Key to/,/"Program/d;/"[A-Z]/d;/~ *$/d’
1228 $ cat > test2.c <<EOF

1220 it main (void) { return O; }

1230 EOF

a1 $ gee -s -02 -0 test2 test2.c

1232 $ readelf -Sl .Jtest2 | sed -e "$SEDCMD" -e "$SEDCMD2"

1233 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
123a [0] NULL 00000000 000000 000000 00 o 0 O
s [1] .interp PROGBITS 08048114 000114 000013 00 A O 0 1

_r

Jakub Jelinek Draft 0.7

25

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245 ...

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272 ...

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

128 IN this casebss section was small enough thaelink

[2] .note.ABI-tag NOTE 08048128 000128 000020 0O A O O 4

[3] .hash HASH 08048148 000148 000024 04 A 4 0 4

[4] .dynsym DYNSYM 0804816c 00016c 000040 10 A 5 1 4

[5] .dynstr STRTAB 08048lac 0001ac 000045 000 A 0O 0 1

[6] .gnu.version VERSYM 080481f2 0001f2 000008 02 A 4 0 2

[71 .gnu.version_r VERNEED 080481fc 0001fc 000020 00 A 5 1 4

[8] .rel.dyn REL 0804821c 00021c 000008 08 A 4 0 4

[9] .rel.plt REL 08048224 000224 000008 08 A 4 b 4

[10] .init PROGBITS 0804822c 00022c 000017 OO AX O O 4

[22] .bss NOBITS 080494f8 0004f8 000004 00 WA 0 0 4

[23] .comment PROGBITS 00000000 0004f8 000132 00 0 0 1

[24] .shstrtab STRTAB 00000000 00062a 0000be 00 0 0 1

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000034 0x08048034 0x08048034 0x000e0 0x000e0 R E Ox4

INTERP 0x000114 0x08048114 0x08048114 0x00013 0x00013 R Ox1
[Requesting program interpreter: /lib/ld-linux.so.2]

LOAD 0x000000 0x08048000 0x08048000 0x003fc 0x003fc R E 0x1000

LOAD 0x0003fc 0x080493fc 0x080493fc 0x000fc 0x00100 RW 0x1000

DYNAMIC 0x000408 0x08049408 0x08049408 0x000c8 0x000c8 RW 0x4

NOTE 0x000128 0x08048128 0x08048128 0x00020 0x00020 R 0x4

STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW Ox4

prelink -N ./test2

readelf -S| .Jtest2 | sed -e "$SEDCMD" -e "$SEDCMD2"

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[0] NULL 00000000 000000 000000 00 0 0 O

[1] .interp PROGBITS 08048114 000114 000013 00O A O O 1

[2] .note.ABI-tag NOTE 08048128 000128 000020 OO A O 0 4

[3] .hash HASH 08048148 000148 000024 04 A 4 0 4

[4] .dynsym DYNSYM 0804816c 00016c 000040 10 A 23 1 4

[5] .gnu.liblist GNU_LIBLIST 08048lac 000lac 000028 14 A 23 0 4

[6] .gnu.version VERSYM 080481f2 0001f2 000008 02 A 4 0 2

[71 .gnu.version_r VERNEED 080481fc 0001fc 000020 00 A 23 1 4

[8] .rel.dyn REL 0804821c 00021c 000008 08 A 4 0 4

[9] .rel.plt REL 08048224 000224 000008 08 A 4 b 4

[10] .init PROGBITS 0804822c 00022c 000017 00O AX O O 4

[22] .bss PROGBITS 080494f8 0004f8 000004 00 WA 0 0 4

[23] .dynstr STRTAB 080494fc 0004fc 000058 000 A O 0 1

[24] .gnu.conflict RELA 08049554 000554 0000cO oc A 4 0 4

[25] .comment PROGBITS 00000000 000614 000132 00 0 0 1

[26] .gnu.prelink_undo PROGBITS 00000000 000748 0004d4 01 0 0 4

[27] .shstrtab STRTAB 00000000 000clc 0000eb 00 0 0 1

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000034 0x08048034 0x08048034 0x000e0 0x000e0 R E Ox4

INTERP 0x000114 0x08048114 0x08048114 0x00013 0x00013 R Ox1
[Requesting program interpreter: /lib/ld-linux.so.2]

LOAD 0x000000 0x08048000 0x08048000 0x003fc 0x003fc R E 0x1000

LOAD 0x0003fc 0x080493fc 0x080493fc 0x00218 0x00218 RW 0x1000

DYNAMIC 0x000408 0x08049408 0x08049408 0x000c8 0x000c8 RW 0x4

NOTE 0x000128 0x08048128 0x08048128 0x00020 0x00020 R 0x4

STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW Ox4

Listing 16: Reshuffling of an executable with smals

converted it tSSHT.PROGBITS

1280 $ SEDCMD="s/".* \.plt.*$/.../;\[.*\.text/,\[.*\.got/d’

1290 $ SEDCMD2="/Section to Segment/,$d;/"Key to/,/"Program/d;/"[A-Z)/d;/" *$/d’
1o $ cat > test3.c <<EOF

1202 int foo [4096];

26

Draft 0.7

Prelink

1203 it main (void) { return O; }

124 EOF

125 $ gcc -s -O2 -0 test3 test3.c

1206 $ readelf -Sl ./test3 | sed -e "$SEDCMD" -e "$SEDCMD2"

197 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
12 [O] NULL 00000000 000000 000000 00 0O 0 O
1290 [1] .interp PROGBITS 08048114 000114 000013 0O A O O 1
wo [2] .note.ABl-tag NOTE 08048128 000128 000020 OO A O O 4
wor [3] .hash HASH 08048148 000148 000024 04 A 4 0 4
12 [4] .dynsym DYNSYM 0804816¢c 00016c 000040 10 A 5 1 4
wos [5] .dynstr STRTAB 08048lac 000lac 000045 00 A O 0 1
14 [6] .gnu.version VERSYM 080481f2 0001f2 000008 02 A 4 0 2
1os [7] .gnu.version_r VERNEED 080481fc 0001lfc 000020 00 A 5 1 4

wos [8] .rel.dyn REL 0804821c 00021c 000008 08 A 4 0 4
w7 [9] .rel.plt REL 08048224 000224 000008 08 A 4 b 4
s [10] .init PROGBITS 0804822c 00022c 000017 00O AX O O 4
1309 ...

1o [22] .bss NOBITS 08049500 000500 004020 00O WA 0 0 32
1 [23] .comment PROGBITS 00000000 000500 000132 00 0 0 1
12 [24] .shstrtab STRTAB 00000000 000632 0000be 00 0 0 1
w3 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

134 PHDR 0x000034 0x08048034 0x08048034 0x000e0 0x000e0 R E Ox4

s INTERP 0x000114 0x08048114 0x08048114 0x00013 0x00013 R Ox1

1316 [Requesting program interpreter: /lib/ld-linux.so.2]

1317 LOAD 0x000000 0x08048000 0x08048000 0x003fc 0x003fc R E 0x1000

s LOAD 0x0003fc 0x080493fc 0x080493fc 0x000fc 0x04124 RW 0x1000

139 DYNAMIC 0x000408 0x08049408 0x08049408 0x000c8 0x000c8 RW 0x4

120 NOTE 0x000128 0x08048128 0x08048128 0x00020 0x00020 R 0x4

w1 STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW Ox4

122 $ prelink -N ./test3

1323 $ readelf -S| ./test3 | sed -e "$SEDCMD" -e "$SEDCMD2"

124 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
s [0] NULL 00000000 000000 000000 00 0O 0 O
1w [1] .interp PROGBITS 08047114 000114 000013 0O A O O 1
127 [2] .note.ABl-tag NOTE 08047128 000128 000020 OO A O O 4
w8 [3] .dynstr STRTAB 08047148 000148 000058 0O A O 0 1
120 [4] .gnu.liblist GNU_LIBLIST 080471a0 0001a0 000028 14 A 3 0 4

1o [5] .gnu.conflict RELA 080471c8 0001c8 0000cO Oc A 7 0 4

131 [6] .hash HASH 08048148 001148 000024 04 A 7 0 4
12 [7] .dynsym DYNSYM 0804816¢c 00116c 000040 10 A 3 1 4
w3 [8] .gnu.version VERSYM 080481f2 0011f2 000008 02 A 7 0 2
wa [9] .gnu.version_r VERNEED 080481fc 0011fc 000020 00 A 3 1 4

s [10] .rel.dyn REL 0804821c 00121c 000008 08 A 7 0 4
s [11] .rel.plt REL 08048224 001224 000008 08 A 7 d 4
w7 [12] .init PROGBITS 0804822c 00122c 000017 00O AX O O 4
1338 ...

139 [24] .bss NOBITS 08049500 0014f8 004020 00 WA 0 0 32
10 [25] .comment PROGBITS 00000000 0014f8 000132 00 0 0 1
1 [26] .gnu.prelink_undo PROGBITS 00000000 00162c 0004d4 01 0O 0 4

12 [27] .shstrtab STRTAB 00000000 001b00 0000eb 00 0 0 1
a3 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

1344 PHDR 0x000034 0x08047034 0x08047034 0x000e0 0x000e0 R E Ox4

s INTERP 0x000114 0x08047114 0x08047114 0x00013 0x00013 R Ox1

1346 [Requesting program interpreter: /lib/ld-linux.so.2]

137 LOAD 0x000000 0x08047000 0x08047000 0x013fc 0x013fc R E 0x1000

18 LOAD 0x0013fc 0x080493fc 0x080493fc 0x000fc 0x04124 RW 0x1000

19 DYNAMIC 0x001408 0x08049408 0x08049408 0x000c8 0x000c8 RW 0x4

1o NOTE 0x000128 0x08047128 0x08047128 0x00020 0x00020 R 0x4

w1 STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW Ox4

Listing 17: Reshuffling of an executable with decreasing of base address

152 INtest3 the base address of the executable was decreased by one page and the new sections added there.

Jakub Jelinek Draft 0.7 27

1353 $ SEDCMD="s/".* \.plt.*$/...[;/\[.*\.text/,\[.*\.got/d’
14 $ SEDCMD2="/Section to Segment/,$d;/"Key to/,/"Program/d;/"[A-Z]/d;/" *$/d’
13ss $ cat > testd.c <<EOF

1356 iNt foo [4096];
157 int main (void) { return O; }
1358 EOF

159 $ geec -WIl--verbose 2>&1 \

1360

| sed '["===/,/"===/'d;/"===/d;s/0x08048000/0x08000000/" > test4.lds

11 $ gec -s -02 -0 testd testd.c -WI,-T,test4.lds
12 $ readelf -Sl ./test4 | sed -e "$SEDCMD" -e "$SEDCMD2"

13 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
1we [0] NULL 00000000 000000 000000 00 0 0 O
wes [1] .interp PROGBITS 08000114 000114 000013 0O A O O 1
wes [2] .note.ABl-tag NOTE 08000128 000128 000020 OO A O O 4
w7 [3] .hash HASH 08000148 000148 000024 04 A 4 0 4
s [4] .dynsym DYNSYM 0800016¢c 00016c 000040 10 A 5 1 4
e [5] .dynstr STRTAB 080001ac 000lac 000045 00 A O 0 1
w0 [6] .gnu.version VERSYM 080001f2 0001f2 000008 02 A 4 0 2
11 [7] .gnu.version_r VERNEED 080001fc 0001fc 000020 00 A 5 1 4
w2 [8] .rel.dyn REL 0800021c 00021c 000008 08 A 4 0 4
wiz [9] .rel.plt REL 08000224 000224 000008 08 A 4 b 4
174 [10] .init PROGBITS 0800022c 00022c 000017 00O AX O O 4
1375 ...
ws [22] .bss NOBITS 08001500 000500 004020 00O WA 0 0 32
177 [23] .comment PROGBITS 00000000 000500 000132 00 0 0 1
ws [24] .shstrtab STRTAB 00000000 000632 0000be 00 0 0 1
we Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
10 PHDR 0x000034 0x08000034 0x08000034 0x000e0 0x000e0 R E Ox4
s INTERP 0x000114 0x08000114 0x08000114 0x00013 0x00013 R Ox1
1382 [Requesting program interpreter: /lib/ld-linux.so.2]
13 LOAD 0x000000 0x08000000 0x08000000 0x003fc 0x003fc R E 0x1000
e LOAD 0x0003fc 0x080013fc 0x080013fc 0x000fc 0x04124 RW 0x1000
s DYNAMIC 0x000408 0x08001408 0x08001408 0x000c8 0x000c8 RW 0x4
16 NOTE 0x000128 0x08000128 0x08000128 0x00020 0x00020 R 0x4
1r STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW Ox4
188 $ prelink -N ./test4
1380 $ readelf -S| ./test4 | sed -e "$SEDCMD" -e "$SEDCMD2"
1o [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
w1 [0] NULL 00000000 000000 000000 00 0O 0 O
12 [1] .interp PROGBITS 08000134 000134 000013 0O A O O 1
13z [2] .note.ABl-tag NOTE 08000148 000148 000020 OO A O O 4
14 [3] .hash HASH 08000168 000168 000024 04 A 4 0 4
s [4] .dynsym DYNSYM 0800018c 00018c 000040 10 A 22 1 4
s [5] .gnu.version VERSYM 080001f2 0001f2 000008 02 A 4 0 2
17 [6] .gnu.version_r VERNEED 080001fc 0001fc 000020 00O A 22 1 4
wes [7] .rel.dyn REL 0800021c 00021c 000008 08 A 4 0 4
e [8] .rel.plt REL 08000224 000224 000008 08 A 4 a 4
o [9] .init PROGBITS 0800022c 00022c 000017 OO AX O O 4
1401 ...
w2 [21] .bss NOBITS 08001500 0004f8 004020 00 WA 0 0 32
uos [22] .dynstr STRTAB 080064f8 0004f8 000058 000 A O 0 1
104 [23] .gnu.liblist GNU_LIBLIST 08006550 000550 000028 14 A 22 0 4
1uos [24] .gnu.conflict RELA 08006578 000578 0000cO 0c A 4 0 4
us [25] .comment PROGBITS 00000000 000638 000132 00 0 0 1
17 [26] .gnu.prelink_undo PROGBITS 00000000 00076¢c 0004d4 01 0O 0 4
s [27] .shstrtab STRTAB 00000000 000c40 0000eb 00 0 0 1
s Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
140 PHDR 0x000034 0x08000034 0x08000034 0x000e0 0x000e0 R E Ox4
111 INTERP 0x000134 0x08000134 0x08000134 0x00013 0x00013 R Ox1
1412 [Requesting program interpreter: /lib/ld-linux.so.2]
113 LOAD 0x000000 0x08000000 0x08000000 0x003fc 0x003fc R E 0x1000
112 LOAD 0x0003fc 0x080013fc 0x080013fc 0x000fc 0x04124 RW 0x1000
s LOAD 0x0004f8 0x080064f8 0x080064f8 0x00140 0x00140 RW 0x1000
e DYNAMIC 0x000408 0x08001408 0x08001408 0x000c8 0x000c8 RW 0x4
117 NOTE 0x000148 0x08000148 0x08000148 0x00020 0x00020 R 0x4

28 Draft 0.7 Prelink

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0Ox4

Listing 18: Reshuffling of an executable with addition of a new segment

In the last example, base address was not decreased but instea®@ bewDsegment has been added.

R.<arch> _COPYrelocations are typically against first part of tBHT.NOBITS .bss section. So thaprelink can

apply them, it needs to first change their sectioBHI_.PROGBITS but asbss section typically occupies much larger

part of memory, it is not desirable to convests section intoSHT.PROGBITSas whole. A section cannot be partly
SHT.PROGBITSand partlySHT.NOBITS, soprelink first splits the section into two parts, firgynbss which covers

area from the start obss section up to highest byte to which some COPY relocation is applied and then thewld

The first is converted t8HT.PROGBITSand its size is decreased, the latter stayF NOBITS and its start address and

file offset are adjusted as well as its size decreased. The dynamic linker handles relocations in the executable last, so
prelink cannot just copy memory from the shared library where the symbol of the COPY relocation has been looked
up in. There might be relocations applied by the dynamic linker in normal relocation processing to the objects, so
prelink has to first process the relocations against that memory area. Relocations which don’t need conflict fixups
are already applied, goelink just needs to apply conflict fixups against the memory area, then copy it to the newly
createddynbss section.

Here is an example which shows various things which COPY relocation handlgngiimk needs to deal with:

$ cat > testl.c <<EOF
struct A { char a; struct A *b; int *c; int *d; };
int bar, baz;
struct A foo = { 1, &foo, &bar, &baz }
int *addr (void) { return &baz; }
EOF
$ cat > test.c <<EOF
#include <stdio.h>
struct A { char a; struct A *b; int *c; int *d; };
int bar, *addr (void), big[8192];
extern struct A foo;
int main (void)
{
printf ("%p: %d %p %p %p %p %p\n", &foo, foo.a, foo.b, foo.c, foo.d,
&bar, addr ());
}
EOF
$ gcc -nostdlib -shared -fpic -s -0 testl.so testl.c
$ gcc -s -0 test test.c ./testl.so
$.Jltest
0x80496¢c0: 1 0x80496c0 0x80516e0 0x4833a4 0x80516e0 0x4833a4
$ readelf -r test | sed 'A.rel\.dyn/,\.rel\.plt/'d;/"0/!d’

080496ac 00000c06 R_386_GLOB_DAT 00000000 __ gmon_start
080496c0 00000605 R_386_COPY 080496¢0 foo
$ readelf -S test | grep bss
[22] .bss NOBITS 080496¢c0 0006cO0 008024 00 WA O 0 32

$ prelink -N ./test ./testl.so
$ readelf -s test | grep foo

6: 080496¢0 16 OBJECT GLOBAL DEFAULT 25 foo
$ readelf -s testl.so | grep foo

15: 004a9314 16 OBJECT GLOBAL DEFAULT 6 foo
$ readelf -r test | sed '/.gnu.conflict/,\.rel\.dyn/!d;/"0/'d’

00429318 00000001 R_386_32 080496¢0
004a931c 00000001 R_386_32 080516e0
005f9874 00000001 R_386_32 fffffffO
005f9878 00000001 R_386_32 00000001
005f98bc 00000001 R_386_32 ffftfff4
005f9900 00000001 R_386_32 ffffffec
005f9948 00000001 R_386_32 ffffffdc

Jakub Jelinek Draft 0.7 29

172 005f995¢c 00000001 R_386_32 ffffffe0

1473 005f9980 00000001 R_386_32 fffffff8

174 005f9988 00000001 R_386_32 ffffffe4

175 005f99a4 00000001 R_386_32 ffffffd8

176 005f99c4 00000001 R_386_32 ffffffe8

177 005f99d8 00000001 R_386_32 08048584
173 004c2510 00000007 R_386_JUMP_SLOT 00534460
1479 004c2514 00000007 R_386_JUMP_SLOT 00534080
uso 004c2518 00000007 R_386_JUMP_SLOT 00534750
us1 004c251c 00000007 R_386_JUMP_SLOT 005342c0
182 004c2520 00000007 R_386_JUMP_SLOT 00534200

uss $ objdump -s -j .dynbss test

1484

1485 test: file format elf32-i386

1486

1487 Contents of section .dynbss:

138 80496c0 01000000 c0960408 e0160508 a4934a00 J.
use $ objdump -s -j .data testl.so

1490

1401 testl.so: file format elf32-i386
1492

1493 Contents of section .data:

192 429314 01000000 14934a00 a8934a00 a4934a00 J..J..J.

ues $ readelf -S test | grep bss

wue [24] .dynbss PROGBITS 080496c0 0016cO 000010 00 WA 0 0 32
197 [25] .bss NOBITS 080496d0 0016d0 008014 00 WA O 0 32

1 $ sed 's/8192/1/ test.c > test2.c
1499 $ gcc -s -0 test2 test2.c .J/testl.so
1500 $ readelf -S test2 | grep bss

sor [22] .bss NOBITS 080496b0 0006b0 00001c 00 WA O 0 8
102 $ prelink -N ./test2 ./testl.so

103 $ readelf -S test2 | grep bss

1soa [22] .dynbss PROGBITS 080496b0 0006b0 000010 00O WA O
is0s [23] .bss PROGBITS 080496c0 0006c0 00000c 00 WA O

o o
o

Listing 19: Relocation handling oflynbss objects

1506 Becauseaest.c executable is not compiled as position independent code and takes addfessarfable, a COPY

1s07 relocation is needed to avoid dynamic relocation against executable’s reagThtyADsegment. Theoo object

1s08 IN testl.so has one field with no relocations applied at all, one relocation against the variable itself, one relocation
1500 Which needs a conflict fixup (as it is overridden by the variable in the executable) and one with relocation which doesn't
1510 Need any fixups. The first and last field contain already the right values in pretesteédo , while second and third

1511 One heed to be changed for symbol addresses in the executable (as showsbjduting output). The conflict fixups

1s12 @gainstfoo in testl.so need to stay (unless it is a C++ virtual table RFTI data, i.e. not in this testcase). In

1513 test , prelink changeddynbss to SHT.PROGBITSand keptSHTNOBITS .bss , while in slightly modified testcase

1s14 (test2) the size ofbss was small enough thatelink chose to make 8HT.PROGBITStoo and grow the read-write

1515 PT_.LOADsegment and putlynstr ~ and.gnu.conflict sections after it.

12 Prelink undo operation

116 Prelinking of shared libraries and executables is designed to be reversible, so that prelink operation followed by undo
1517 Operation generates bitwise identical file to the original before prelinking. For this opepedlmik stores the orig-

1518 inal ELF header, all the program and all section headers ingawaprelink _undo section before it starts prelinking

1519 @an unprelinked executable or shared library. When undoing the modificatimtiak has to converRELA back

1520 t0 REL first if REL to RELA conversion was done during prelinking and all allocated sections above it relocated down
121 10 adjust for the section shrink. Relocation types which were changed when trying toRasloid RELA conversion

122 Need to be changed back (e.g. on 1A-32, it is assurRig8b _GLOBDAT relocations should be only those agaimst

1523 Section andR 386 _32 relocations in the remaining places). @BLAarchitectures, the memory pointed byffset

1524 field of the relocations needs to be reinitialized to the values stored there by the linker originallyrelfrde it

1525 doesn’t matter much what this value is (e.g. always 0, copy.addend , etc.), as long as it is computable from the

30 Draft 0.7 Prelink

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

informationprelink has during undo operati@ The GNU linker had to be changed on several architectures, so

that it stores there such a value, as in several places the value e.g. depended on original addend before final link (which
is not available anywhere after final link time, sinceaddend field could be adjusted during the final link). If second

word of.got section has been modified, it needs to be reverted back to the original value (on most architectures zero).
In executables, sections which were moved during prelinking need to be put back and segments added while prelinking
must be removed.

There are 3 different ways how an undo operation can be performed:

e Undoing individual executables or shared libraries specified on the command line in place (i.e. when the undo
operation is successful, the prelinked executable or library is atomically replaced with the undone object).

e With -0 option, only a single executable or shared library given on the command line is undone and stored to the
file specified aso option’s argument.

e With -ua options,prelink builds a list of executables in paths written in its config file (plus directories and
executables or libraries from command line) and all shared libraries these executables depend on. All executables
and libraries in the list are then unprelinked. This option is used to unprelink the whole system. It is not perfect
and needs to be worked on, since e.g. if some executable uses some shared library which no other executable
links against, this executable (and shared library) is prelinked, then the executable is removed (e.g. uninstalled)
but the shared library is kept, then the shared library is not unprelinked unless specifically mentioned on the
command line.

13 \Verification of prelinked files

As prelink needs to modify executables and shared libraries installed on a system, it complicates system integrity
verification (e.g.rpm -V, TripWire). These systems store checksums of installed files into some database and during
verification compute them again and compare to the values stored in the database. On a prelinked system most of the
executables and shared libraries would be reported as mod#ielthk offers a special mode for these systems, in

which it verifies that unprelinking the executable or shared library followed by immediate prelinking (with the same
base address) creates bitwise identical output with the executable or shared library that's being verified. Furthermore,
depending on otharrelink options, it either writes the unprelinked image to its standard output or computes MD5

or SHA1 digest from this unprelinked image. Mere undo operation to a file and checksumming it is not good enough,
since an intruder could have modified e.g. conflict fixups or memory which relocations point at, changing a behavior
of the program while file after unprelinking would be unmodified.

During verification, bottprelink executable and the dynamic linker are used, so a proper system integrity verifica-
tion first checks whethasrelink executable (which is statically linked for this reason) hasn’'t been modified, then
usesprelink --verify to verify the dynamic linker (when verificating.so the dynamic linker is not executed)
followed by verification of other executables and libraries.

Verification requires all dependencies of checked object to be unmodified since last prelinking. If some dependency
has been changed or is missipeglink will report it and return with non-zero exit status. This is because prelinking
depends on their content and so if they are modified, the executable or shared library might be different to one after
unprelinking followed by prelinking again. In the future, perhaps it would be possible to even verify executables or
shared libraries without unmodified dependencies, under the assumption that in such case the prelink information will
not be used. It would just need to verify that nothing else but the information only used when dependencies are up to
date has changed between the executable or library on the filesystem and file after unprelink followed by prelink cycle.
The prelink operation would need to be modified in this case, so that no information is collected from the dynamic
linker, the list of dependencies is assumed to be the one stored in the executable and expect it to have identical number
of conflict fixups.

14 Measurements

There are two areas whepeelink can speed things up noticeably. The primary is certainly startup time of big GUI
applications where the dynamic linker spends from 100ms up to a few seconds before giving control to the application.

205ych as relocation type,_addend value, type, binding, flags or other attributes of relocation’s symbol, what section the relocation points
into or the offset within section it points to.

Jakub Jelinek Draft 0.7 31

1570 Another area is when lots of small programs are started up, but their execution time is rather short, so the startup time
1sn Whichprelink — optimizes is a noticeable fraction of the total time. This is typical for shell scripting.

12 First numbers are frotmbench benchmark, version 3.0-a3. Most of the benchmarksiench suite measure kernel

1573 sSpeed, so it doesn’t matter much whethelink is used or not. Only itat _proc benchmarlprelink shows up
1574 Visibly. This benchmark measures 3 different things:

1575 e fork proc, which isfork() ~ followed by immediatexit(1) inthe child andvait(0) inthe parent. The results

1576 are (as expected) about the same between unprelinked and prelinked systems.

1577 e exec proc, i.e. fork() followed by immediateclose(l) andexecve() of a simple hello world program

1578 (this program is compiled and linked during the benchmark into a temporary directory and is never prelinked).
1579 The numbers are 168 to 20Q:s better on prelinked systems, because there is no relocation processing needed
1580 initially in the dynamic linker and because all relative relocationtinso.6 ~ can be skipped.

1581 e shproc,i.e.fork() followed by immediatelose(1) andexeclp('/bin/sh", "sh", "-c¢", "ftmp/hello”,

1582 0) . Although the hello world program is not prelinked in this case either, the shell is, so out of the 800

1583 100Qus speedup less than 2@ can be accounted on the speed up of the hello world programeasdiproc

1584 benchmark and the rest to the speedup of shell startup.

1ss First 4 rows are from running the benchmark on a fully unprelinked system, the last 4 rows on the same system, but
1586 fUlly prelinked.

1587 LMBENCH 3.0 SUMMARY
1588
1589 (Alpha software, do not distribute)

1590

1501 Processor, Processes - times in microseconds - smaller is better
1592
1503 Host OS Mhz null null open slct sig sig fork exec sh
1504 call 1/O stat clos TCP inst hndl proc proc proc
1595 === SUSSSSSSSSSS SSss SSss SSSs SSSs SSSs Ssms mmsms mmes mmes mmes s mees

1596 pork Linux 2.4.22 651 0.53 0.97 6.20 8.10 41.2 1.44 4.30 276. 1497 5403
17 pork Linux 2.4.22 651 0.53 0.95 6.14 7.91 37.8 1.43 4.34 274. 1486 5391
1se8 pork Linux 2.4.22 651 0.56 0.94 6.18 8.09 43.4 1.41 4.30 251. 1507 5423
1599 pork Linux 2.4.22 651 0.53 0.94 6.12 8.09 41.0 1.43 4.40 256. 1497 5385
w00 pork Linux 2.4.22 651 0.56 0.94 5.79 7.58 39.1 1.41 4.30 271. 1319 4460
w01 pork Linux 2.4.22 651 0.56 0.92 5.76 7.40 38.9 1.41 4.30 253. 1304 4417
w02 pork Linux 2.4.22 651 0.56 0.95 6.20 7.83 37.7 1.41 4.37 248. 1323 4481
w03 pork Linux 2.4.22 651 0.56 1.01 6.04 7.77 37.9 1.43 4.32 256. 1324 4457

Listing 20:Imbench results without and with prelinking

1s0s Below is a sample timing of a 239K long configure shell script from GCC on both unprelinked and prelinked system.
1605 Preparation step was following:

w06 Cd; cvs -d :pserver:anoncvs@subversions.gnu.org:/cvsroot/gcc login

1607 # Empty password

1608 CVS -d :pserver.anoncvs@subversions.gnu.org:/cvsroot/gcc -z3 co -D20031103 gcc
1600 Mkdir “/gcc/obj

1610 cd “/gcc/obj; ../configure i386-redhat-linux; make configure-gcc

Listing 21: Preparation script for shell script tests

111 On an unprelinked system, the results were:

32 Draft 0.7 Prelink

1612 ¢d “/gcc/obj/gec

w3 for i in 1 2; do ./config.status --recheck > /dev/null 2>&1; done

s for i in 1 2 3 4; do time ./config.status --recheck > /dev/null 2>&1; done
1615

1616 real 0m4.436s

1617 USEr 0m1.730s
1618 SYS 0m1.260s
1619

1620 real 0m4.409s
1621 USer 0m1.660s
1622 SYS 0m1.340s
1623

1624 real 0m4.431s
1625 USer 0m1.810s
1626 SYS 0m1.300s
1627

1628 real 0m4.432s
1620 USEr 0m1.670s
1630 SYS 0m1.210s

Listing 22: Shell script test results on unprelinked system

121 and on a fully prelinked system:

1632 ¢d “/gcc/obj/gec

133 for i in 1 2; do ./config.status --recheck > /dev/null 2>&1; done

w3a for i in 1 2 3 4; do time ./config.status --recheck > /dev/null 2>&1; done
1635

1636 real 0m4.126s
1637 USEr 0m1.590s
1638 SYS 0m1.240s
1639

1640 real 0m4.151s
1641 USEr 0m1.620s
1642 SYS 0m1.230s
1643

1644 real 0m4.161s
1645 USEr 0m1.600s
1646 SYS 0m1.190s
1647

1648 real 0m4.122s
1649 USEr 0m1.570s
1650 SYS 0m1.230s

Listing 23: Shell script test results on prelinked system

151 NOW timing of a few big GUI programs. All timings were done without X server running and RIEPLAY environ-

152 Ment variable not set (so that when control is transfered to the application, it very soon finds out there is no X server
1653 it can talk to and bail out). The measurements are done by the dynamic linker in ticks on a 651MHz dual Pentium IlI
1sa Machine, i.e. ticks have to be divided by 651000000 to get times in seconds. Each application has been run 4 times and
155 the results with smallest total time spent in the dynamic linker was chosen. Epiphany WWW browser and Evolution
156 Mail client were chosen as examplesGik+ applications (typically they use really many shared libraries, but many

157 Of them are quite small, there aren'’t really many relocations nor conflict fixups and most of the libraries are written
158 iN C) and Konqueror WWW browser and KWord word processor were chosen as examieBSagplications (typ-

w0 ically they use slightly fewer shared libraries, though still a lot, most of the shared libraries are written in C++, have
160 Many relocations and cause many conflict fixups, especially without C++ conflict fixup optimizatipredink).

1ss1 ON non-prelinked system, the timings are done with lazy binding, i.e. wittBIND_NOW=5et in the environment.

162 This is because that's how people generally run programs, on the other side it is not exact apples to apples comparison,

Jakub Jelinek Draft 0.7 33

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

since on prelinked system there is no lazy binding with the exception of shared libraries loaded thopagh. So

when control is passed to the application, prelinked programs should be slightly faster for a while since non-prelinked
programs will have to do symbol lookups and processing relocations (and on various architectures flushing instruction
caches) whenever they call some function they haven't called before in particular shared library or in the executable.

$ Idd ‘which epiphany-bin‘ | wc -I
64
$ # Unprelinked system
$ LD_DEBUGs=statistics epiphany-bin 2>&1 | sed ’'s/~ */I’

18960:

18960: runtime linker statistics:

18960: total startup time in dynamic loader: 67336593 clock cycles

18960: time needed for relocation: 58119983 clock cycles (86.3%)
18960: number of relocations: 6999

18960: number of relocations from cache: 4770

18960: number of relative relocations: 31494

18960: time needed to load objects: 8696104 clock cycles (12.9%)
(epiphany-bin:18960): Gtk-WARNING **: cannot open display:

18960:

18960: runtime linker statistics:

18960: final number of relocations: 7692

18960: final number of relocations from cache: 4770

$ # Prelinked system
$ LD_DEBUGs=statistics epiphany-bin 2>&1 | sed 's/” *II'

25697:

25697: runtime linker statistics:

25697: total startup time in dynamic loader: 7313721 clock cycles

25697: time needed for relocation: 565680 clock cycles (7.7%)
25697: number of relocations: 0

25697: number of relocations from cache: 1205

25697: number of relative relocations: O

25697: time needed to load objects: 6179467 clock cycles (84.4%)
(epiphany-bin:25697): Gtk-WARNING **: cannot open display:

25697:

25697: runtime linker statistics:

25697: final number of relocations: 31

25697: final number of relocations from cache: 1205

$ Idd ‘which evolution* | wc -
68
$ # Unprelinked system
$ LD_DEBUG-=statistics evolution 2>&1 | sed 's/” *//’

19042:

19042: runtime linker statistics:

19042: total startup time in dynamic loader: 54382122 clock cycles

19042: time needed for relocation: 43403190 clock cycles (79.8%)
19042: number of relocations: 3452

19042: number of relocations from cache: 2885

19042: number of relative relocations: 34957

19042: time needed to load objects: 10450142 clock cycles (19.2%)
(evolution:19042): Gtk-WARNING **: cannot open display:

19042:

19042: runtime linker statistics:

19042: final number of relocations: 4075

19042: final number of relocations from cache: 2885
$ # Prelinked system
$ LD_DEBUGs=statistics evolution 2>&1 | sed ’'s/” *II’

25723:
25723: runtime linker statistics:
25723: total startup time in dynamic loader: 9176140 clock cycles

34 Draft 0.7 Prelink

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

25723: time needed for relocation: 203783 clock cycles (2.2%)

25723: number of relocations: 0

25723: number of relocations from cache: 525

25723: number of relative relocations: O

25723: time needed to load objects: 8405157 clock cycles (91.5%)
(evolution:25723): Gtk-WARNING **: cannot open display:

25723:

25723: runtime linker statistics:

25723: final number of relocations: 31

25723: final number of relocations from cache: 525

$ Idd ‘which konqueror* | wc -
37
$ # Unprelinked system
$ LD_DEBUGs=statistics konqueror 2>&1 | sed 's/” */I’
18979:
18979: runtime linker statistics:
18979: total startup time in dynamic loader: 131985703 clock cycles

18979: time needed for relocation: 127341077 clock cycles (96.4%)
18979: number of relocations: 25473

18979: number of relocations from cache: 53594

18979: number of relative relocations: 31171

18979: time needed to load objects: 4318803 clock cycles (3.2%)
konqueror: cannot connect to X server

18979:

18979: runtime linker statistics:

18979: final number of relocations: 25759

18979: final number of relocations from cache: 53594
$ # Prelinked system
$ LD_DEBUGs=statistics konqueror 2>&1 | sed 's/” */I’

25733:

25733: runtime linker statistics:

25733: total startup time in dynamic loader: 5533696 clock cycles

25733: time needed for relocation: 1941489 clock cycles (35.0%)
25733: number of relocations: 0

25733: number of relocations from cache: 2066

25733: number of relative relocations: 0

25733: time needed to load objects: 3217736 clock cycles (58.1%)
konqueror: cannot connect to X server

25733:

25733: runtime linker statistics:

25733: final number of relocations: 0

25733: final number of relocations from cache: 2066

$ Idd ‘which kword* | wc -l
40
$ # Unprelinked system
$ LD_DEBUG=statistics kword 2>&1 | sed ’'s/” *II’

19065:

19065: runtime linker statistics:

19065: total startup time in dynamic loader: 153684591 clock cycles

19065: time needed for relocation: 148255294 clock cycles (96.4%)
19065: number of relocations: 26231

19065: number of relocations from cache: 55833

19065: number of relative relocations: 30660

19065: time needed to load objects: 5068746 clock cycles (3.2%)
kword: cannot connect to X server

19065:

19065: runtime linker statistics:

19065: final number of relocations: 26528

19065: final number of relocations from cache: 55833
$ # Prelinked system

$ LD_DEBUG=statistics kword 2>&1 | sed ’'s/” */I’
25749:

Jakub Jelinek Draft 0.7

35

1790 25749: runtime linker statistics:

1791 25749: total startup time in dynamic loader: 6516635 clock cycles

1792 25749: time needed for relocation: 2106856 clock cycles (32.3%)
1793 25749: number of relocations: 0

1706 25749: number of relocations from cache: 2130

1795 25749: number of relative relocations: 0

1796 25749: time needed to load objects: 4008585 clock cycles (61.5%)
1797 kword: cannot connect to X server

1798 25749:

1799 25749: runtime linker statistics:

1800 25749: final number of relocations: 0

1801 25749: final number of relocations from cache: 2130

Listing 24: Dynamic linker statistics for unprelinked and prelinked GUI programs

1802 N the case of above mention&tk+ applications, the original startup time spent in the dynamic linker decreased into
1803 11% to 17% of the original times, witkDEapplications it decreased even into around 4.2% of original times.

180a The startup time reported by the dynamic linker is only part of the total startup time of a GUI program. Unfortunately it
1805 Cannot be measured very accurately without patching each application separately, so that it would print current process
10s CPU time at the point when all windows are painted and the process starts waiting for user input. The following table
107 contains values reported liyne(1l) command on each of the 4 GUI programs running under X, both on unprelinked

108 @nd fully prelinked system. As soon as each program painted its windows, it was killed by application’s quit hot key
1809 E} Especially theeal time values depend also on the speed of human reactions, so each measurement was repeated
110 10 times. All timings were done with hot caches, after running the applications two times before measurement.

Type | Values (in seconds) Average Std.Dev.
unprelinked epiphany
real | 3.063 2.84 2996 2901 3.019 2929 2883 2975 2922 3/02054 0.0698
user | 233 231 228 232 244 237 229 235 234 2412344 0.0508
sys 0.2 023 023 019 019 012 025 016 0.14 0.140.185 0.0440
prelinked epiphany
real | 2.773 2.743 2.833 2.753 2.753 2.644 2717 2897 2.68 2{78T55 0.0716
user | 218 217 217 212 223 226 213 217 215 2.152.173 0.0430
sys 013 015 0.18 015 011 004 018 014 0.1 0.150.133 0.0416
unprelinked evolution
real | 2.106 1.886 1.828 2.12 1867 1.871 2.242 1.871 1.862 2{24189 0.1679
user | 112 109 115 119 117 123 115 111 117 @ 1.141.152 0.0408
sys 0.1 0.11 013 0.07 01 0.05 011 0.11 0.09 0.080.095 0.0232
prelinked evolution
real | 1.684 1.621 1.686 1.72 1694 1691 1.631 1.697 1.668 1/53%63 0.0541
user | 092 087 092 095 079 086 094 087 0.89 0.860.887 0.0476
sys 0.06 0.1 006 005 011 0.08 007 0.1 0.12 0.070.082 0.0239
unprelinked kword
real | 2.111 1.414 136 1.356 1.259 1.383 128 1.321 1.252 1407414 0.2517
user | 1.04 0.9 093 088 089 089 087 089 0.9 0.8 0.899 0.0597
sys 0.07 004 006 005 006 0.1 0.09 0.08 0.08 0.120.075 0.0242
prelinked kword
real | 1.59 1.052 0972 1064 1106 1.087 1.066 1.087 1.065 1|003.09 0.1735
user | 0.61 053 058 0.6 0.6 058 059 061 057 0.6 0587 0.0241
sys 008 008 006 006 003 007 0.06 003 0.06 0.040.057 0.0183
unprelinked konqueror
real | 1.306 1.386 1.27 1.243 1227 1.286 1.262 1.322 1.345 133298 0.0495
user | 0.88 086 0.88 0.9 087 083 083 086 086 0.890.866 0.0232
sys 0.07 011 012 01 0.12 008 013 012 0.09 0.080.102 0.0210
prelinked konqueror
real | 1.056 0.962 0.961 0.906 0.927 0.923 0.933 0.958 0.955 1}1@®72 0.0722
user | 0.56 0.6 056 052 057 058 05 0.57 0.61 0.550.562 0.0334

21Ctrl+W for Epiphany,Ctrl+Q for Evolution and Konqueror anidnter in Kword's document type choice dialog.

36 Draft 0.7 Prelink

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

Type | Values (in seconds) Average Std.Dev.
sys 0.1 0.13 008 015 0.07 009 009 0.09 0.1 0.080.098 0.0244

Table 1: GUI program start up times without and with prelinking

OpenOffice.org is probably the largest program these days in Linux, mostly written in C+®pkmOffice.org

1.1, the main executablegffice.bin , links directly against 34 shared libraries, but typically during startup it loads
usingdlopen many others. As has been mentioned eartislink cannot speed up loading shared libraries using
dlopen , since it cannot predict in which order and what shared libraries will be loaded (and thus cannot compute
conflict fixups). Thesoffice.bin is typically started through a wrapper script and depending on what arguments
are passed to it, differe@penOffice.org application is started. With no options, it starts just empty window with
menu from which the applications can be started, with [sésate:factory/swriter argument it starts a word
processor, witlprivate:factory/scalc it starts a spreadsheet etc. Whseiffice.bin is already running, if you

start another copy of it, it just instructs the already running copy to pop up a new window and exits.

In an experimentoffice.bin has been invoked 7 times against running X server, with no argunpeinitse:factory/swriter
private:factory/scalc , private:factory/sdraw , private:factory/simpress , private:factory/smath

arguments (in all these cases nothing was pressed at all) and last wijihivthie:factory/swriter argument

where the menu iterlew Presentation ~ was selected and the word processor window closed. In all these cases,
Iproc/‘pidof soffice.bin'/maps file was captured and the application then killed. This file contains among
other things list of all shared libraries mmapped by the process at the point where it started waiting for user input
after loading up. These lists were then summarized, to get number of the runs in which particular shared library was
loaded up out of the total 7 runs. There were 38 shared libraries shipped as Ppendfffice.org package which

have been loaded in all 7 times, another 3 shared libraries includepeimOffice.org (and also one shared library
shipped in another packadiédb _cxx-4.1.so) which were loaded 6 time@ There was one shared library loaded

in 5 runs, but was locale specific and thus not worth considering. InspepieigOffice.org source, these shared
libraries are never unloaded witltlose , sosoffice.bin can be made much mopeelink friendly and thus save
substantial amount of startup time by linking against all those 76 shared libraries instead of just 34 shared libraries it is
linked against. In the timings beloapfficel.bin is the originakoffice.bin as created by thepenOffice.org

makefiles andoffice3.bin is the same executable linked dynamically against additional 42 shared libraries. The
ordering of those 42 shared libraries matters for the number of conflict fixups, unfortunately with large C++ shared
libraries there is no obvious rule for ordering them as sometimes it is more useful when a shared library precedes its
dependency and sometimes vice versa, so a few different orderings were tried in several steps and always the one with
smallest number of conflict fixups was chosen. Still, the number of conflict fixups is quite high and big part of the
fixups are storing addressesRifT slots in the executable into various places in shared I|br.|esff|ce2 bin is

another experiment, where the executable itself is empty source file, all objects which were origisatlgdrbin

executable with the exception of start files were recompiled as position independent code and linked into a new shared
library. This reduced number of conflicts a lot and speeded up start up times agéins8.bin when caches are

hot. It is a little bit slower thasoffice3.bin when running with cold caches (e.g. for the first time after bootup), as
there is one more shared library to load etc.

In the timings below, numbers faofficel.bin andsoffice2.bin resp. soffice3.bin cannot be easily com-
pared, asofficel.bin loads less than half of the needed shared libraries which the remaining two executables load
and the time to load those shared libraries doesn’t show up there. Still, when it is prelinked it takes just slightly more
than two times longer to loagbffice2.bin thansofficel.bin and the times are still less than 7% of how long it
takes to load just the initial 34 shared libraries when not prelinking.

$ S='s/” X’
$ Idd /usr/lib/openoffice/program/sofficel.bin | wc -l
34

22| all runs but when ran without arguments. But when the application is started without any arguments, it cannot do any useful work, so one
loads one of the applications afterward anyway.

23This might get better when the linker is modified to handle calls without ever taking address of the function in executables specially, but only
testing it will actually show it up.

Jakub Jelinek Draft 0.7 37

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

$ # Unprelinked system

$ LD_DEBUG=statistics /usr/lib/openoffice/program/sofficel.bin 2>&1 | sed "$S"
19095:

19095: runtime linker statistics:

19095: total startup time in dynamic loader: 159833582 clock cycles

19095: time needed for relocation: 155464174 clock cycles (97.2%)
19095: number of relocations: 31136

19095: number of relocations from cache: 31702

19095: number of relative relocations: 18284

19095: time needed to load objects: 3919645 clock cycles (2.4%)

lusr/lib/openoffice/program/sofficel.bin X11 error: Can’'t open display:
Set DISPLAY environment variable, use -display option

or check permissions of your X-Server

(See "man X" resp. "man xhost" for details)

19095:
19095: runtime linker statistics:
19095: final number of relocations: 31715

19095: final number of relocations from cache: 31702

$ # Prelinked system

$ LD_DEBUGs=statistics /usr/lib/openoffice/program/sofficel.bin 2>&1 | sed "$S"
25759:

25759: runtime linker statistics:

25759: total startup time in dynamic loader: 4252397 clock cycles

25759: time needed for relocation: 1189840 clock cycles (27.9%)
25759: number of relocations: 0

25759: number of relocations from cache: 2142

25759: number of relative relocations: 0

25759: time needed to load objects: 2604486 clock cycles (61.2%)

lusr/lib/openoffice/program/sofficel.bin X11 error: Can’'t open display:
Set DISPLAY environment variable, use -display option

or check permissions of your X-Server

(See "man X" resp. "man xhost" for details)

25759:
25759: runtime linker statistics:
25759: final number of relocations: 24

25759: final number of relocations from cache: 2142
$ Idd /usr/lib/openoffice/program/soffice2.bin | wc -I
77
$ # Unprelinked system
$ LD_DEBUG=statistics /usr/lib/openoffice/program/soffice2.bin 2>&1 | sed "$S"
19115:
19115: runtime linker statistics:
19115: total startup time in dynamic loader: 947793670 clock cycles

19115: time needed for relocation: 936895741 clock cycles (98.8%)
19115: number of relocations: 69164

19115: number of relocations from cache: 94502

19115: number of relative relocations: 59374

19115: time needed to load objects: 10046486 clock cycles (1.0%)

lusr/lib/openoffice/program/soffice2.bin X11 error: Can’'t open display:
Set DISPLAY environment variable, use -display option

or check permissions of your X-Server

(See "man X" resp. "man xhost" for details)

19115:
19115: runtime linker statistics:
19115: final number of relocations: 69966

19115: final number of relocations from cache: 94502

$ # Prelinked system

$ LD_DEBUG=statistics /usr/lib/openoffice/program/soffice2.bin 2>&1 | sed "$S"
25777:

25777: runtime linker statistics:

25777: total startup time in dynamic loader: 10952099 clock cycles

25777: time needed for relocation: 3254518 clock cycles (29.7%)
25777: number of relocations: 0

25777: number of relocations from cache: 5309

25777: number of relative relocations: 0

38 Draft 0.7

Prelink

1910 25777: time needed to load objects: 6805013 clock cycles (62.1%)
1020 /usr/lib/openoffice/program/soffice2.bin X11 error: Can’t open display:

1921 Set DISPLAY environment variable, use -display option

1922 Or check permissions of your X-Server

1923 (See "man X" resp. "man xhost" for details)

1024 25777:
1925 25777: runtime linker statistics:
1026 25777: final number of relocations: 24

1927 25777 final number of relocations from cache: 5309

1928 $ Idd /ust/lib/openoffice/program/soffice3.bin | wc -l

1929 76

130 $ # Unprelinked system

w1 $ LD_DEBUG=statistics /usr/lib/openoffice/program/soffice3.bin 2>&1 | sed "$S"

1032 19131:

1033 19131: runtime linker statistics:

193 19131: total startup time in dynamic loader: 852275754 clock cycles

1935 19131: time needed for relocation: 840996859 clock cycles (98.6%)
1036 19131: number of relocations: 68362

1037 19131: number of relocations from cache: 89213

1038 19131: number of relative relocations: 55831

1930 19131: time needed to load objects: 10170207 clock cycles (1.1%)

1940 /ustr/lib/openoffice/program/soffice3.bin X11 error: Can't open display:
191 Set DISPLAY environment variable, use -display option

1942 Or check permissions of your X-Server

1943 (See "man X" resp. "man xhost" for details)

1044 19131:
145 19131: runtime linker statistics:
1046 19131: final number of relocations: 69177

1947 19131: final number of relocations from cache: 89213
18 $ # Prelinked system
1949 $ LD_DEBUG=statistics /usr/lib/openoffice/program/soffice3.bin 2>&1 | sed "$S"

1050 25847:

1051 25847: runtime linker statistics:

1952 25847: total startup time in dynamic loader: 12277407 clock cycles

1053 25847: time needed for relocation: 4232915 clock cycles (34.4%)
1054 25847: number of relocations: 0

1055 25847 number of relocations from cache: 8961

1956 25847: number of relative relocations: 0

1957 25847: time needed to load objects: 6925023 clock cycles (56.4%)

1958 /usr/lib/openoffice/program/soffice3.bin X11 error: Can't open display:
1959 Set DISPLAY environment variable, use -display option

1960 Or check permissions of your X-Server

1961 (See "man X" resp. "man xhost" for details)

1062 25847:
1963 25847: runtime linker statistics:
1064 25847: final number of relocations: 24

1965 25847: final number of relocations from cache: 8961

Listing 25: Dynamic linker statistics for unprelinked and prelinked OpenOffice.org

1066 Below are measurement usitige(1) for each of theoffice.bin variants, prelinked and unprelinkedpenOffice.org
17 Was Killed immediately after paintingriter 's window usingCtrl+Q .

Type | Values (in seconds) Average Std.Dev.
unprelinked sofficel.bin private:factory/swriter
real | 5,569 5.149 5547 5559 5549 5139 555 5559 5598 5/559178 0.1765
user | 4.65 4.57 4.62 4.64 4.57 4.55 4.65 4.49 4.52 4.464.572 0.0680
sys 029 024 019 021 021 021 025 025 0.27 0.260.238 0.0319
prelinked sofficel.bin private:factory/swriter
real | 4946 4.899 5291 4879 4879 4898 5299 4901 4.887 4/90DB78 0.1681
user | 423 427 418 424 417 422 415 425 426 4.314.228 0.0494

Jakub Jelinek Draft 0.7 39

Type | Values (in seconds) Average Std.Dev.
sys 022 022 024 026 03 026 029 0.17 0.21 0.230.24 0.0389

unprelinked soffice2.bin private:factory/swriter
real | 5,575 5.166 5.592 5.149 5571 5559 5159 5157 5569 5/18B65 0.2201
user | 459 45 457 437 447 457 456 441 463 4.5 4517 0.0826
sys 024 024 021 034 027 019 019 027 019 0.29.243 0.0501
prelinked soffice2.bin private:factory/swriter
real | 3.69 3.66 3.658 3.661 3.639 3.638 3.649 3.659 365 3/68%656 0.0146
user | 293 288 288 29 284 263 289 285 277 283284 0.0860
sys 022 018 023 0.2 0.18 029 022 023 024 0.220.221 0.0318
unprelinked soffice3.bin private:factory/swriter
real | 5.031 5.02 5009 5028 5019 5.019 5.019 5.052 5.426 5|02D65 0.1273
user | 4.31 4.35 4.34 4.3 4.38 4.29 4.45 4.37 4.38 4.444.361 0.0547
sys 027 025 026 027 027 031 018 017 0.16 0.150.229 0.0576
prelinked soffice3.bin private:factory/swriter
real | 3.705 3.669 3.659 3.669 3.66 3.659 3.659 3.661 3.668 3|68%66 0.0151
user | 286 288 285 284 283 286 284 291 286 2.8 2.853 0.0295
sys 026 019 027 025 024 023 028 021 021 0.270.241 0.0303

Table 2: OpenOffice.org start up times without and with prelinking

1968

15 Similar tools on other ELF using Operating Systems

169 SOomething similar terelink is available on otheELF platforms. On Irix there iIQUICKSTARTand on Solarisrle

190 SGI QUICKSTARTIs much closer tgrelink from these two. Thegs program relocates libraries to (if possible)
1w unique virtual address space slot. The base address is either specified on the command linelwibptioa, orrgs

1972 USES &0 _locations registry with-c or-u options and finds a not yet occupied slot. This is similar to hasink

173 lays out libraries without them option.

1972 QUICKSTARTuUSes the same data structure for library lisg§NN _Lib) as prelink , but uses more fields in it

w5 (prelink doesn’'t usd _version andl flags fields at the moment) and uses different dynamic tags and section
17 type for it. Another difference is th@UICKSTARTmakes all liblist sectiolSHFEALLOG whether in shared libraries or

1977 €xecutablesprelink only needs liblist section in the executable be allocated, liblist sections in shared libraries are
178 NOt allocated and used @telink time only.

w9 The biggest difference betwe&UICKSTARTand prelink is in how conflicts are encoded. SGI stores them in a

1080 VEry compact format, as array afynsym section indexes for symbols which are conflicting. There is no information

1081 publicly available what exactly SGI dynamic linker does when it is resolving the conflicts, so this is just a guess. Given
1082 that the conflicts can be stored in a shared library or executable different to the shared library with the relocations
1083 @gainst the conflicting symbol and different to the shared library which the symbol was originally resolved to, there
1082 dOESN’t seem to be an obvious way how to handle the conflicts very cheaply. The dynamic linker probably collects
wes list of all conflicting symbol names, for each such symbol compHtgshash and walks hash buckets for this hash

1086 Of all shared libraries, looking for the symbol. Every time it finds the symbol, all relocations against it need to be
10e7 redone. Unlike thisprelink stores conflicts as an array BfNN _Rela structures, with one entry for each shared

1088 relocation against conflicting symbol in some shared library. This guarantees that there are no symbol lookups during
1989 Program startup (provided that shared libraries have not been changed after prelinking), whid\@iks TARTWill

190 do some symbol lookups if there are any conflic@JICKSTARTputs conflict sections into the executable and every

1wa Shared library wheregs determines conflicts whilerelink stores them in the executable only (but the array is

1002 typically much bigger). Disk space requirements for prelinked executables are certainly bigger than for requickstarted
1903 €Xecutables, but which one has bigger runtime memory requirements is unclear. If prelinking can be ustked, all

1904 @nd.rel* sections in the executable and all shared libraries are skipped, so they will not need to be paged in during
1995 Whole program’s life (with the exception of first and last pages in the relocation sections which can be paged in because
1996 Of Other sections on the same page), but wimle.conflict section needs to be paged in (read-only) and processed.

1907 With QUICKSTART probably all (much smaller) conflict sections need to be paged in and also likely for each conflict
108 Whole relocation sections of each library which needs the conflict to be applied against.

40 Draft 0.7 Prelink

1909 IN QUICKSTARTdocumentation, SGI says that conflicts are very costly and that developers should avoid them. Un-
2000 fOrtunately, this is sometimes quite hard, especially with C++ shared libraries. It is unclear wiygthdoes any
2001 Optimizations to trim down the number of conflicts.

2002 Sun took completely different approach. The dynamic linker providéisianp (const char *ipath, const

2008 Char *opath, int flags); function. ipath is supposed to be a path to BbF object loaded already in the current

2000 Process. This function creates a nEWF object atopath, which is like theipath object, but relocated to the base address

200 Which it has actually been mapped at in the current process and with some relocations (spedifiedbitmask)

2006 applied as they have been resolved in the current process. Relocations, which have been applied, are overwritten in
207 the relocation sections witR * _NONErelocations. Therle executable, in addition to other functions not related to

2008 Startup times, with some specific options usesdidiemp function to dump all shared libraries a particular executable

2000 USES (and the executable itself) into a new directory, with selected relocation classes being already applied. The main
200 disadvantage of this approach is that such alternate shared libraries are at least for most relocation classes not shareable
2011 across different programs at all (and for those where they could be shareable a little bit there will be many relocations
2012 left for the dynamic linker, so the speed gains will be small). Another disadvantage is that all relocation sections need
2013 10 be paged into the memory, just to find out that most of the relocatior® amONE

16 ELF extensions for prelink

214 Prelink needs a fewELF extensions for its data structuresgnF objects. For list of dependencies at the time of
205 prelinking, a new section typ@HT.GNULIBLIST is defined:

2016 #define SHT_GNU_LIBLIST Ox6ffffff7 /* Prelink library list */
2017
2018 typedef struct

2019

{

2020 EIf32_Word |_name; /* Name (string table index) */
2021 EIf32_Word |_time_stamp; /* Timestamp */

2022 EIf32_Word |_checksum; /* Checksum */

2023 EIf32_Word |_version; /* Unused, should be zero */
2024 EIf32_Word |_flags; /* Unused, should be zero */

2025 } EIf32_Lib;
2026
2027 typedef struct

2028

{

2020 EIf64_Word |_name; /* Name (string table index) */
2030 EIf64_Word |_time_stamp; [* Timestamp */

201 EIf64_Word |_checksum; [* Checksum */

2032 ElIf64_Word |_version; /* Unused, should be zero */
2033 EIf64_Word |_flags; /* Unused, should be zero */

203 } EIf64_Lib;

Listing 26: New structures and section type constants useutiyk

20 INtroduces a few new special sections:

Name Type Attributes
In shared libraries

.gnu.liblist SHT_GNUL_LIBLIST 0

.gnu.libstr SHT_STRTAB 0

.gnu.prelinkundo | SHT_PROGBITS 0

In executables

.gnu.liblist SHT_.GNU_LIBLIST SHF_ALLOC
.gnu.conflict SHT_RELA SHEALLOC
.gnu.prelinkundo | SHT_PROGBITS 0

Jakub Jelinek Draft 0.7 41

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

Table 3: Special sections introducedglink

.gnu.liblist This section contains ori@fNN _Lib structure for each shared library which the object has been pre-
linked against, in the order in which they appear in symbol search scope. Sesttidin’s value should contain
section index ofgnu.libstr for shared libraries and section index.@fnsym for executablesl. .name field
contains the dependent library’s name as index into the section poingadibl field. | _time _stamp resp.

I _checksum should contain copies @T_GNUPRELINKEDresp.DT_.CHECKSUMalues of the dependent library.

.gnu.conflict This section contains ori#fNN _Rela structure for each needecklink conflict fixup.r _offset
field contains the absolute address at which the fixup needs to be applieddend the value that needs to be
stored at that locatiorELFNNR.SYMof r _info field should be zeradsLFNNR.TYPEOf r _info field should be
architecture specific relocation type which should be handled the same addar sections on the archi-
tecture. FOEMALPHAmMachine, all types witlRR ALPHAJMP_SLOTIn lowest 8 bits ofELF64_R TYPEshould be
handled aR ALPHAJMP.SLOTrelocation, the upper 24 bits contains index in originglh.plt section of the
RALPHAJMP.SLOTrelocation the fixup was created for.

.gnu.libstr This section contains strings fognu.liblist section in shared libraries whergnu.liblist
section is not allocated.

.gnu.prelink _undo This section containgrelink private data used faqurelink --undo operation. This data in-
cludes the originaEIfNN _Ehdr of the object before prelinking and all its origir&lfiNN _Phdr andEIfNN _Shdr
headers.

Prelink also defines 6 new dynamic tags:

#define DT_GNU_PRELINKED 0x6ffffdf5 /* Prelinking timestamp */
#define DT_GNU_CONFLICTSZ Ox6ffffdf6é /* Size of conflict section */
#define DT_GNU_LIBLISTSZ Ox6ffffdf7 /* Size of library list */
#define DT_CHECKSUM Ox6ffffdf8 /* Library checksum */

#define DT_GNU_CONFLICT Ox6ffffef8 /* Start of conflict section */
#define DT_GNU_LIBLIST Ox6ffffefd /* Library list */

Listing 27: Prelink dynamic tags

DT_.GNUPRELINKEDandDT.CHECKSUMynamic tags must be present in prelinked shared libraries. The corresponding
d.un.d _val fields should contain time when the library has been prelinked (in seconds since January, 1st, 1970, 00:00
UTC) resp. CRC32checksum of all sections with one 8HFALLOG SHFEWRITE or SHEEXECINSTRDbit set whose

type is notSHTNOBITS, in the order they appear in the shared library’s section header tableDWHNUPRELINKED
andDT_.CHECKSUM.dn.v _val values set to O for the time of checksum computation.

The DT.GNULIBLIST and DT.GNULIBLISTSZ dynamic tags must be present in all prelinked executables. The
d_un.d _ptr value of theDT_.GNULIBLIST dynamic tag contains the virtual address of tiyau.liblist section
in the executable andlun.d _val of DT.GNULIBLISTSZ tag contains its size in bytes.

DT_.GNUCONFLICTandDT.GNUCONFLICTSzdynamic tags may be present in prelinked executallas.d ptr of

DT_.GNUCONFLICTdynamic tag contains the virtual addressgsfu.conflict section in the executable (if present)
andd_un.d _val of DT.GNUCONFLICTSZtag contains its size in bytes.

A Glossary

42 Draft 0.7 Prelink

s Nomenclature

2012 ASCII Shield areaFirst 16MB of address space on 32-bit architectures. These addresses have zeros in upper 8 bits,

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

which on little endian architectures are stored as last byte of the address and on big endian architectures as first
byte of the address. A zero byte terminates string, so it is hard to control the exact arguments of a function if
they are placed on the stack above the address. On big endian machines, it is even hard to control the low 24
bits of the address,

Global Offset TableGO7 When position independent code needs to build address which requires dynamic relocation,

instead of building it as constant in registers and applying a dynamic relocation against the read-only segment
(which would mean that any pages of the read-only segment where relocations are applied cannot be shared
between processes anymore), it loads the address from an offset table private to each shared library, which
is created by the linker. The table is in writable segment and relocations are applied against it. Position
independent code uses on most architectures a spgaciategister which points to the start of the Global

Offset Table,

Lazy Binding A way to postpone symbol lookups for calls until a function is called for the first time in particular

Page

PLT

shared library. This decreases number of symbol lookups done during startup and symbols which are never
called don't need to be looked up at all. Calls requiring relocations jumpRbte which is initially set up

so that a function in the dynamic linker is called to do symbol lookup. The looked up address is then stored
either into thePLT slot directly (if PLT is writable) or intoGOTentry corresponding to theLT slot and any
subsequent calls already go directly to that address. Lazy binding can be turned off byLgeRind NOW=1

in the environment. Prelinked programs never use lazy binding for the executable or any shared libraries not
loaded usingllopen

Memory block of fixed size which virtual memory subsystem deals with as a unit. The size of the page depends
on the addressing hardware of the processor, typically pages are 4K or 8K, in some cases bigger,

Process Linkage Table. StubsHnF shared libraries and executables which allow lazy relocations of function
calls. They initially point to code which will do the symbol lookup. The result of this symbol lookup is
then stored in the Process Linkage Table and control transfered to the address symbol lookup returned. All
following calls to thePLT slot just branch to the already looked up address directly, no further symbol lookup

is needed,

Position Independent Executabfehybrid between classic&LF executables andLF shared libraries. It has a form

REL

RELA

of a ET.DYNobject like shared libraries and should contain position independent code, so that the kernel
can load the executable starting at random address to make certain security attacks harder. Unlike shared
libraries it contain© T DEBUGynamic tag, must haveT_INTERP segment with dynamic linker's path, must

have meaningful code at itsentry and can use symbol lookup assumptions normal executables can make,
particularly that no symbol defined in the executable can be overridden by a shared library symbol,

Type of relocation structure which includes just offset, relocation type and symbol. Addend is taken from
memory location at offset,

Type of relocation structure which includes offset, relocation type, symbol against which the relocation is and
an integer addend which is added to the symbol. Memory at offset is not supposed to be used by the relocation.
Some architectures got this implemented incorrectly and memory at offset is for some relocation types used by
the relocation, either in addition to addend or addend is not used &&ilArelocations are generally better

for prelink , since wherprelink stores a pre-computed value into the memory location at offset, the addend
value is not lost,

relative relocationRelocation, which doesn’'t need a symbol lookup, just adds a shared library load offset to certain

RTTI

memory location (or locations),

C++ runtime type identification,

Symbol Search Scop&he sequence dLF objects in which a symbol is being looked up. When a symbol definition

is found, the searching stops and the found symbol is returned. Each program has a global search scope,
which starts by the executable, is typically followed by the immediate dependencies of the executable and
then their dependencies in breadth search order (where only first occurrence of each shared library is kept).
If DT.FILTER or DT.AUXILIARY dynamic tags are used the order is slightly different. Each shared library
loaded withdlopen has its own symbol search scope which contains that shared library and its dependencies.
Prelink operates also with natural symbol search scope of each shared library, which is the global symbol
search scope the shared library would have if it were started as the main program,

Jakub Jelinek Draft 0.7 43

B References

216 [1] |System V Application Binary Interface, Edition 4. 1.

2127 [2] |System V Application Binary Interface, Intel 386 Architecture Processor Supplement.

2128 [3] |System V Application Binary Interface, AMDG64 Architecture Processor Supplement.

2129 [4] |System V Application Binary Interface, Intel Itanium Architecture Processor Supplement, Intel Corporation, 2001.

2130 [5] |Steve Zucker, Kari KarhiSystem V Application Binary Interface, PowerPC Architecture Processor Supplement,
2131 SunSoft, IBM, 1995.

2132 [6] System V Application Binary Interface, PowerPC64 Architecture Processor Supplement.
2133 [7] |System V Application Binary Interface, ARM Architecture Processor Supplement.
2134 [8] ISPARC Compliance Definition, Version 2.4.1, SPARC International, Inc., 1999.
2135 [9] |UIrich Drepper,How To Write Shared Libraries, Red Hat, Inc., 2003.

213 [10] |Linker And Library Guide, Sun Microsystems, 2002.

2137 [11] John R. LevineLinkers and Loaders, 1999.

2138 [12] \UIrich Drepper,ELF Handling For Thread-Local Storage, Red Hat, Inc., 2003.
2139 [13] |Alan Modra, PowerPC Specific Thread Local Storage ABI, 2003.

210 [14] |Alan Modra, PowerPC64 Specific Thread Local Storage ABI, 2003.

21m1 [15] IDWARF Debugging Information Format Version 2.

212 [16] IDWARF Debugging Information Format Version 3, Draft, 2001.

213 [17] (The ”stabs” debugging information format.

C Reuvision History

242 2003-11-03First draft.

44 Draft 0.7 Prelink

http://www.caldera.com/developers/devspecs/gabi41.pdf
http://www.caldera.com/developers/devspecs/abi386-4.pdf
http://www.x86-64.org/cgi-bin/cvsweb.cgi/x86-64-ABI/
http://refspecs.freestandards.org/elf/IA64-SysV-psABI.pdf
http://refspecs.freestandards.org/elf/elfspec_ppc.pdf
http://refspecs.freestandards.org/elf/elfspec_ppc.pdf
http://refspecs.freestandards.org/elf/elfspec_ppc.pdf
ftp://ftp.linuxppc64.org/pub/people/amodra/PPC-elf64abi.txt.gz
http://www.arm.com/support/566FHT/$File/ARMELF.pdf
http://www.sparc.com/standards/SCD.2.4.1.ps.Z
http://people.redhat.com/drepper/dsohowto.pdf
http://docs.sun.com/db/doc/816-1386
http://www.gzlinux.org/docs/category/dev/c/linkerandloader.pdf
http://people.redhat.com/drepper/tls.pdf
ftp://ftp.linuxppc64.org/pub/people/amodra/ppc32tls.txt.gz
ftp://ftp.linuxppc64.org/pub/people/amodra/ppc64tls.txt.gz
http://www.eagercon.com/dwarf/dwarf-2.0.0.pdf
http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
http://sources.redhat.com/cgi-bin/cvsweb.cgi/src/gdb/doc/stabs.texinfo?cvsroot=src

108" BIRD’

— S - - - -1

Krepunoq o3ed |

45

—

Draft 0.7

Jakub Jelinek

qu. - gyep” _

— S _— = =
repunoq a3ed |

|
— — IT IIIIIIIIIIIIIIII - —
|
. pu9 39S 0I T IXY’ UAp o1 I
_
|
R L
|
| Arepunoq a5ed -
|
“ 5
¥ "N _ _ __ __ S E
m
m pUd” 39S OI ** 1X3)" | uAp a1 I
i
||
I_ IIIIIIIIIIIIIIII — -
|

$921n0s 7 woliy paddew oq 03 spasu a3ed sy,

—— e o e o e e e e o e o e e e e e e e e e e e e

ISuAp: * ysey

TSuAp: - ysey

TSUAp " ysey

Figure 3: Growing read-only segment if page padding needed

47

Draft 0.7

Jakub Jelinek

Prelilik

Draft 0.7

Drai(0.7 /

Jakub Jelinek

—
I
I
I
I
I
I
I
I
I

Prelijk
|

QWIRI] Yo ' UOISIA'NU

Draft 0.7

QWIRI] U9° *** UOISIdA NU

	1 Preface
	2 Caching of symbol lookup results
	3 Prelink design
	4 Collecting executables and libraries which should be prelinked
	5 Assigning virtual address space slots
	6 Relocation of libraries
	7 REL to RELA conversion
	8 Conflicts
	9 Prelink optimizations to reduce number of conflict fixups
	10 Thread Local Storage support
	11 Prelinking of executables and shared libraries
	12 Prelink undo operation
	13 Verification of prelinked files
	14 Measurements
	15 Similar tools on other ELF using Operating Systems
	16 ELF extensions for prelink
	A Glossary
	B References
	C Revision History

